使用3种不同的算法从倾斜风速计中检索3个风分量(Matlab代码实现)

简介: 使用3种不同的算法从倾斜风速计中检索3个风分量(Matlab代码实现)

💥1 概述

本文包括一些算法来纠正声波风速计的倾斜角度误差,包括Wilczak等人的方法[1]。其他方法是双倍和三倍旋转算法。

本呈件包括:

  • 4 个示例文件:一个用于平面拟合算法,一个用于双旋转,一个用于三重旋转,一个用于使用不同检索算法估计摩擦速度。
  • 函数倾斜校正.m
  • 函数 friction_velocity.m
  • 包含模拟风数据的文件 data.mat

参考文献:

下载链接:Sonic Anemometer Tilt Correction Algorithms | SpringerLink

📚2 运行结果

部分代码:

clearvars;close all;clc;
% load simlated wind velocities
load('data.mat','u','v','w','t')
[M,N]=size(u);
yaw  = 30; % yaw angle (horizontal plane, between u and v)
elev = 3; % elevation angle (vertical plane, between w and u)
incl = 2; % inclination angle (vertical plane, between w and v)
R1 = [cosd(yaw),-sind(yaw),0;sind(yaw),cosd(yaw),0;0,0,1]; % matrix rotation around axis z
R2 = [cosd(elev),0,-sind(elev);0,1,0;sind(elev),0,cosd(elev)]; % matrix rotation around axis zy
R3 = [1,0,0; 0,cosd(incl),-sind(incl);0,sind(incl),cosd(incl)]; % matrix rotation around axis x
A = R1*R2*R3;  % 3D rotation matrix
% Construction of tilted velocity component
u_tilted = zeros(size(u));
v_tilted = zeros(size(u));
w_tilted = zeros(size(u));
for ii=1:M,
    dummy = A\[u(ii,:);v(ii,:);w(ii,:)];
    u_tilted(ii,:) = dummy(1,:);
    v_tilted(ii,:) = dummy(2,:);
    w_tilted(ii,:) = dummy(3,:);
end
clearvars;close all;clc;
% load simlated wind velocities
load('data.mat','u','v','w','t')
[M,N]=size(u);
yaw  = 30; % yaw angle (horizontal plane, between u and v)
elev = 3; % elevation angle (vertical plane, between w and u)
incl = 2; % inclination angle (vertical plane, between w and v)
R1 = [cosd(yaw),-sind(yaw),0;sind(yaw),cosd(yaw),0;0,0,1]; % matrix rotation around axis z
R2 = [cosd(elev),0,-sind(elev);0,1,0;sind(elev),0,cosd(elev)]; % matrix rotation around axis zy
R3 = [1,0,0; 0,cosd(incl),-sind(incl);0,sind(incl),cosd(incl)]; % matrix rotation around axis x
A = R1*R2*R3;  % 3D rotation matrix
% Construction of tilted velocity component
u_tilted = zeros(size(u));
v_tilted = zeros(size(u));
w_tilted = zeros(size(u));
for ii=1:M,
    dummy = A\[u(ii,:);v(ii,:);w(ii,:)];
    u_tilted(ii,:) = dummy(1,:);
    v_tilted(ii,:) = dummy(2,:);
    w_tilted(ii,:) = dummy(3,:);
end

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1] Wilczak, J. M., Oncley, S. P., & Stage, S. A. (2001). Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 99(1), 127-150.


相关文章
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
6天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
17天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
11天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。