使用HGS算法调整PD控制器增益的无人机动态性能数据——基于启发式的无人机路径跟踪优化(Matlab代码实现)

简介: 使用HGS算法调整PD控制器增益的无人机动态性能数据——基于启发式的无人机路径跟踪优化(Matlab代码实现)

💥1 概述

基于无人机导航系统的自身特点,无人机在导航过程中会出现无法精确定位的情况,从而产生定位误差。如果不能及时校正随时间累积的定位误差,会使无人机无法到达预定目的地,从而导致飞行任务失败。为避免这种情况的发生,研究了考虑定位误差的无人机航迹快速规划问题。以航迹距离最短为目标,考虑定位误差校正约束与航迹约束,建立混合整数规划模型。根据深度优先搜索算法与回溯算法的特点,设计启发式深度优先搜索+回溯算法来求解问题,并在此算法基础上加入模拟退火机制对解的质量进行优化。以某飞行区域的数据为例进行仿真实验,结果表明启发式深度优先搜索+回溯算法可以快速有效地求解考虑定位误差的无人机航迹规划问题。  


📚2 运行结果

 

🎉3 参考文献

[1]李锐,刘占辰,荆献勇.基于启发式算法的无人机三维航迹规划仿真研究[J].电光与控制,2009,16(08):27-31.


👨‍💻4 Matlab代码

主函数部分代码:

clear all
close all
load('HGS20_20.mat');
x_2020      = xa_HGS;
y_2020      = ya_HGS;
z_2020      = za_HGS;
load('HGS30_20.mat');
x_3020      = xb_HGS;
y_3020      = yb_HGS;
z_3020      = zb_HGS;
 load('HGS40_20.mat');
x_4020      = x_HGS;
y_4020      = y_HGS;
z_4020      = z_HGS;
load('xi.mat');
T=0.05;
t = [0:T:40];
x_d     = xi_d(1,:)';
y_d     = xi_d(2,:)';
z_d     = xi_d(3,:)';
phi_d   = xi_d(4,:)';
theta_d = xi_d(5,:)';
psi_d   = xi_d(6,:)';
figure
set(gcf,'position', [150,150,800,500])
x=x_HGS; y=y_HGS; z=z_HGS;
plot3(x_d,y_d,z_d,'k--',x_4020,y_4020,z_4020,'r-',x_2020,y_2020,z_2020,'b-.',x_3020,y_3020,z_3020,'g.','LineWidth',2);
xlabel('X [m]','Fontsize',18);
ylabel('Y [m]','Fontsize',18);
zlabel('Z [m]','Fontsize',18);
set(gca,'Fontsize',18)
legend('Desired trajectory ','40ind, 20 iter','30ind, 20 iter','20ind, 20 iter','AutoUpdate','off','Fontsize',18)
hold on
grid on
%%
clear xi_d
load('xiCircle.mat');
x_dC     = xi_d(1,:)';
y_dC     = xi_d(2,:)';
z_dC     = xi_d(3,:)';
x_HGS_C     = xi(:,4);
y_HGS_C     = xi(:,5);
z_HGS_C     = xi(:,6);
figure
set(gcf,'position', [150,150,800,500])
%x=x_HGS; y=y_HGS; z=z_HGS;
plot3(x_dC,y_dC,z_dC,'k--',x_HGS_C,y_HGS_C,z_HGS_C,'r','LineWidth',2);
xlabel('X [m]','Fontsize',18);
ylabel('Y [m]','Fontsize',18);
zlabel('Z [m]','Fontsize',18);
set(gca,'Fontsize',18)
legend('Desired trajectory ','20ind, 20 iter HGS','Fontsize',18)
hold on
grid on
相关文章
|
6天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
23天前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
40 4
|
3月前
|
数据安全/隐私保护
基于PID控制器的双容控制系统matlab仿真
本课题基于MATLAB2022a实现双容水箱PID控制系统的仿真,通过PID控制器调整泵流量以维持下游水箱液位稳定。系统输出包括水位和流量两个指标,仿真结果无水印。核心程序绘制了水位和流量随时间变化的图形,并设置了硬约束上限和稳态线。双容水箱系统使用一阶线性微分方程组建模,PID控制器结合比例、积分、微分作用,动态调整泵的输出流量,使液位接近设定值。
|
4月前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的参数,可以有效提高控制系统的性能。本文详细介绍了GA优化PID参数的原理、适应度函数的设计以及MATLAB实现步骤,并通过仿真验证了优化效果。希望本文能为读者在实际应用中提供参考和帮助。
156 18
|
4月前
|
算法 数据安全/隐私保护
通过MATLAB实现PID控制器,积分分离控制器以及滑模控制器
本课题通过MATLAB实现PID控制器、积分分离控制器和滑模控制器,对比结果显示滑模控制具有最快的收敛性能、较强的鲁棒性和较小的超调量,优于其他两种控制器。系统仿真结果无水印,核心程序基于MATLAB 2022a。PID控制器由P、I、D单元组成,积分分离PI在大误差时不进行积分,减少超调;滑模控制通过设计滑动面使系统快速收敛,抑制扰动。
基于FOC控制器的BLDC无刷直流电机控制系统matlab编程与仿真
本课题基于MATLAB编程实现BLDC无刷直流电机的FOC控制系统,涵盖FOC控制器、Clarke和Park变换等,不使用Simulink建模。系统通过坐标变换将三相电流转换到dq轴,独立控制励磁和转矩电流,实现高效平滑运行及高动态响应。仿真输出包括三相电流、电机转速和转子角度。版本:MATLAB2022a。
|
5月前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
163 12
|
6月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
551 15
|
6月前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。

热门文章

最新文章