39 MAPREDUCE参数优化

简介: 39 MAPREDUCE参数优化
资源相关参数

(1) mapreduce.map.memory.mb: 一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

(2) mapreduce.reduce.memory.mb: 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

(3)mapreduce.map.java.opts: Map Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.

“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc” (@taskid@会被Hadoop框架自动换为相应的taskid), 默认值: “”

(4) mapreduce.reduce.java.opts: Reduce Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.

“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “”

(5) mapreduce.map.cpu.vcores: 每个Map task可使用的最多cpu core数目, 默认值: 1

(6)mapreduce.map.cpu.vcores: 每个Reduce task可使用的最多cpu core数目, 默认值: 1

容错相关参数

(1) mapreduce.map.maxattempts: 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(2)mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(3) mapreduce.map.failures.maxpercent: 当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。

(4) mapreduce.reduce.failures.maxpercent: 当失败的Reduce Task失败比例超过该值为,整个作业则失败,默认值为0.

(5) mapreduce.task.timeout: Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是300000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

本地运行mapreduce 作业

设置以下几个参数:

mapreduce.framework.name=local
mapreduce.jobtracker.address=local
fs.defaultFS=local
效率和稳定性相关参数

(1) mapreduce.map.speculative: 是否为Map Task打开推测执行机制,默认为false

(2) mapreduce.reduce.speculative: 是否为Reduce Task打开推测执行机制,默认为false

(3) mapreduce.job.user.classpath.first & mapreduce.task.classpath.user.precedence:当同一个class同时出现在用户jar包和hadoop jar中时,优先使用哪个jar包中的class,默认为false,表示优先使用hadoop jar中的class。

(4) mapreduce.input.fileinputformat.split.minsize: 每个Map Task处理的数据量(仅针对基于文件的Inputformat有效,比如TextInputFormat,SequenceFileInputFormat),默认为一个block大小,即 134217728。

目录
相关文章
|
3月前
|
分布式计算 资源调度 监控
MapReduce程序中的主要配置参数详解
【8月更文挑战第31天】
83 0
|
3月前
|
缓存 分布式计算 算法
优化Hadoop MapReduce性能的最佳实践
【8月更文第28天】Hadoop MapReduce是一个用于处理大规模数据集的软件框架,适用于分布式计算环境。虽然MapReduce框架本身具有很好的可扩展性和容错性,但在某些情况下,任务执行可能会因为各种原因导致性能瓶颈。本文将探讨如何通过调整配置参数和优化算法逻辑来提高MapReduce任务的效率。
509 0
|
6月前
|
分布式计算 Hadoop Java
Hadoop MapReduce 调优参数
对于 Hadoop v3.1.3,针对三台4核4G服务器的MapReduce调优参数包括:`mapreduce.reduce.shuffle.parallelcopies`设为10以加速Shuffle,`mapreduce.reduce.shuffle.input.buffer.percent`和`mapreduce.reduce.shuffle.merge.percent`分别设为0.8以减少磁盘IO。
72 1
|
6月前
|
机器学习/深度学习 分布式计算 监控
面经:MapReduce编程模型与优化策略详解
【4月更文挑战第10天】本文是关于MapReduce在大数据处理中的关键作用的博客摘要。作者分享了面试经验,强调了MapReduce的基本原理、Hadoop API、优化策略和应用场景。MapReduce包含Map和Reduce两个主要阶段,Map阶段处理输入数据生成中间键值对,Reduce阶段进行聚合计算。面试重点包括理解MapReduce工作流程、使用Hadoop API编写Map/Reduce函数、选择优化策略(如分区、Combiner和序列化)以及应用场景,如日志分析和机器学习。
136 2
|
6月前
|
分布式计算
MapReduce【数据倾斜的优化】
MapReduce【数据倾斜的优化】
|
6月前
|
存储 分布式计算 自然语言处理
MapReduce【小文件的优化-Sequence文件】
MapReduce【小文件的优化-Sequence文件】
|
缓存 分布式计算 调度
MapReduce 优化经验
MapReduce 优化经验
129 0
|
存储 分布式计算 资源调度
MapReduce框架--InputFormat数据输入--切片优化(11)
MapReduce框架--InputFormat数据输入--切片优化(11)
299 0
MapReduce框架--InputFormat数据输入--切片优化(11)
|
资源调度 分布式计算 Java
YARN and MapReduce的【内存】优化配置详解
在Hadoop2.x中, YARN负责管理MapReduce中的资源(内存, CPU等)并且将其打包成Container。 使之专注于其擅长的数据处理任务, 将无需考虑资源调度.
1502 0
|
分布式计算 资源调度 大数据
【大数据优化】(二)MapReduce 优化方法
【大数据优化】(二)MapReduce 优化方法
427 0
【大数据优化】(二)MapReduce 优化方法