计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度(Matlab代码实现)

简介: 计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度(Matlab代码实现)

💥1 概述

文献来源:

1.1 计及 P2G 协同的含碳捕集和垃圾焚烧 VPP 结构和基本原理

本文所提出的 VPP 系统构成如图 1 所示,其中包含有可灵活调控发电单元(火电机组和垃圾焚烧


电厂)、不可调控发电单元(风电和光伏)、P2G 装置、碳捕集系统、垃圾焚烧电厂的储气装置、电储能和热储能。电负荷由可中断负荷(interruptible load,IL)和固定负荷组成,切断 IL 时需按中断等级给予用户补偿费用[13]。燃气机组由热电联产(combined heat and power,CHP)机组和燃气锅炉组成,热负荷由两者协调提供。

除 CHP 机组外,各发电机组都可以向碳捕集系统和烟气处理系统提供能耗,通过加装储气装


置,使得烟气处理与发电关系解耦,利用不同能量资源在能量/功率上的时空互补性,调度优化上更为灵活地配合可再生能源的出力变化和平抑净负荷波动。各单元的协同运行调度指令依靠能量管理系统采集数据信息后预测出的能量市场电价、可再生能源出力和电热负荷来制定[13]。


1.2 CCPP-P2G-燃气机组子系统

现有 VPP 文献涉及碳捕集电厂–P2G 系统框架的较少,且未有涉及参与燃气供热的综合调度。因


此,本文将碳捕集电厂、P2G 和燃气机组聚合为碳捕集–电转气–燃气机组供热(CCPP-P2G-燃气机组) 系统,将 CCPP 捕集的 CO2 作为优质原料提供给P2G 装置,利用 P2G 消纳弃风弃光生成天然气提供给燃气机组,P2G 生成天然气量和燃气机组天然气需求量的差值参与到天然气市场。CCPP-P2G-燃气供热系统不仅可减少捕集 CO2 后的封存成本,还可将弃风弃光转化成天然气储存于天然气网络,减少CHP 机组和燃气锅炉的购气成本,具有削峰填谷效应,实现了负荷的时空转移。框架如图 2 所示。


📚2 运行结果

PXPARAM_Simplex_Display                         2
CPXPARAM_MIP_Tolerances_MIPGap                   9.9999999999999995e-07
CPXPARAM_Barrier_Display                         2
Tried aggregator 2 times.
MIQP Presolve eliminated 1308 rows and 290 columns.
Aggregator did 288 substitutions.
Reduced MIQP has 533 rows, 598 columns, and 1820 nonzeros.
Reduced MIQP has 48 binaries, 0 generals, 0 SOSs, and 0 indicators.
Reduced MIQP objective Q matrix has 24 nonzeros.
Presolve time = 0.02 sec. (3.66 ticks)
Probing fixed 0 vars, tightened 36 bounds.
Probing time = 0.00 sec. (0.05 ticks)
Tried aggregator 1 time.
MIQP Presolve eliminated 1 rows and 0 columns.
MIQP Presolve modified 34 coefficients.
Reduced MIQP has 532 rows, 598 columns, and 1818 nonzeros.
Reduced MIQP has 48 binaries, 0 generals, 0 SOSs, and 0 indicators.
Reduced MIQP objective Q matrix has 24 nonzeros.
Presolve time = 0.00 sec. (0.59 ticks)
Probing time = 0.00 sec. (0.05 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.02 sec. (7.22 ticks)
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap
      0     0   204253.7116    18                 204253.7116       19         
*     0+    0                       206923.7624   204253.7116             1.29%
      0     0   205911.7001    14   206923.7624      Cuts: 73       87    0.49%
*     0+    0                       206410.6951   205911.7001             0.24%
      0     0   206200.4407    13   206410.6951      Cuts: 48      139    0.10%
      0     0   206239.8844    17   206410.6951      Cuts: 28      169    0.08%
      0     0   206264.4953    17   206410.6951      Cuts: 12      193    0.07%
      0     0   206266.9487    15   206410.6951      Cuts: 12      201    0.07%
*     0+    0                       206353.2894   206266.9487             0.04%
      0     2   206266.9487    15   206353.2894   206296.8327      201    0.03%
Elapsed time = 0.13 sec. (60.75 ticks, tree = 0.01 MB, solutions = 3)
*    15     4      integral     0   206352.9869   206352.8155      330    0.00%
*    17     5      integral     0   206352.8638   206352.8155      332    0.00%
Implied bound cuts applied:  1
Flow cuts applied:  2
Mixed integer rounding cuts applied:  51
Gomory fractional cuts applied:  11
Root node processing (before b&c):
  Real time             =    0.13 sec. (60.02 ticks)
Parallel b&c, 16 threads:
  Real time             =    0.03 sec. (12.95 ticks)
  Sync time (average)   =    0.03 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.16 sec. (72.98 ticks)


🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]孙惠娟,刘昀,彭春华,蒙锦辉.计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J].电网技术,2021,45(09):3534-3545.DOI:10.13335/j.1000-3673.pst.2020.1720.

相关文章
|
1天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
10天前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
1月前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
140 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
25天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
2月前
|
算法 数据可视化 调度
基于PSO粒子群优化的车间调度问题求解matlab仿真,输出甘特图
基于PSO粒子群优化的MATLAB仿真解决车间调度问题,输入机器与工作完成时间,输出甘特图与收敛图,实现多机器多任务最优并行调度。使用MATLAB 2022a版本运行,通过模拟鸟群觅食行为,不断更新粒子速度与位置寻找最优解,采用工序编码,总加工时间为适应度函数,实现快速收敛并可视化调度结果。