遗传算法在TSP中的两步求解(Matlab代码实现)

简介: 遗传算法在TSP中的两步求解(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

物流业作为国家经济体系的重要组成部分,费用居高不下,特别是运输费用达到物流费用的一半以上,是导致物流成本过高的重要因素。旅行商问题是车辆路径问题的特例,是实现车辆路径优化的关键。

✨🔎⚡运行结果⚡🔎✨

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

clc
clear
close all
Fixedcosts = 150;                   %固定成本
nuitTransCost =2.4;                 %单位运输成本
coldRate=1.3;                       %制冷率
congesteRate=1.5;                   %拥堵率
goodLossRate = 0.39;                %货损率
openDoorCost = 30;                  %一次开门费用
openDoorCostRate = 0.26;            %开门费率
MaxDistributeRidus = 15;            %最大费送半径
veichleSpeed = 60;                  %车辆速度
veichleMaxW = 200;                  %车辆最大装载量
Popsize=500;                        %染色体数量
Iteration=100;                      %迭代次数
Pc=0.75;                            %交叉率 0-1之间
Pm=0.7;                             %变异率 0-1之间
step = 0;                           % 初始化阶段
start = [40 50];                    %中心点坐标
pos =load('坐标.txt');
demandArr = load('需求量.txt');
timeWindows = load('时间窗.txt');
server = load('卸货时间.txt');
posInfo = [];
[totalIn,disTribtePoint] = gaMain(Fixedcosts,nuitTransCost,coldRate,congesteRate,goodLossRate,start,openDoorCost,openDoorCostRate,MaxDistributeRidus,veichleSpeed,veichleMaxW,Popsize,Iteration,Pc,Pm,pos,demandArr,timeWindows,server,step,posInfo);
[totalIn,~]=sortrows(totalIn,3);
op = 1;
    while totalIn(op,3)<0
        totalIn(op,3) = totalIn(op,3)*(-1);
        op = op +1;
    end
[totalIn,I]=sortrows(totalIn,3);
inPutNew = totalIn;
distributePos = [];
for n=1:max(inPutNew(:,3))
    distributePos = [distributePos ;inPutNew(find(inPutNew(:,3) == n,1),:)];
end
save('distributePos','distributePos');
[inSize,ii] = size(inPutNew);
jPos = 1;
save('jPos','jPos');
save('inSize','inSize');
save('inPutNew','inPutNew');
% for i =1:disTribtePoint -1
for i =1:disTribtePoint
    save('i','i');save('disTribtePoint','disTribtePoint');save('jPos','jPos');
    clear;
    load('jPos','jPos');load('inSize','inSize');load('inPutNew','inPutNew');load('i','i');load('disTribtePoint','disTribtePoint');
    step = i;
    ho = 0;
    for j = jPos:inSize
        if inPutNew(j,3) == i
            ho = ho +1;
        end
    end
    jPos = jPos + ho;
    realIn = inPutNew(jPos-ho:(jPos-1),:);
Fixedcosts = 80;                   %固定成本
nuitTransCost =1;                  %单位运输成本
coldRate=0;                        %制冷率
congesteRate=0;                    %拥堵率
goodLossRate = 0.5;                %货损率
openDoorCost = 0;                  %一次开门费用
openDoorCostRate = 0;              %开门费率
MaxDistributeRidus = 9999;         %最大配送半径
veichleSpeed = 25;                 %车辆速度
veichleMaxW = 70;                  %车辆最大装载量
Popsize=100;                       %染色体数量
Iteration=100;                     %迭代次数
Pc=0.75;                           %交叉率 0-1之间
Pm=0.7;                            %变异率 0-1之间
demandArr = load('需求量.txt');
timeWindows = load('时间窗.txt');
server = load('卸货时间.txt');
[demandArr,timeWindows,server] = dealExat(demandArr,timeWindows,server,realIn);
[realInSize,~] =  size(realIn);
oneRowp = [1:realInSize-1]';
realInp = [realIn(2:end,:) oneRowp];
posInfo = realInp(:,4:5);
pos =realIn(:,1:2);
start = pos(1, :);
pos(1,:) = [];
gaMain(Fixedcosts,nuitTransCost,coldRate,congesteRate,goodLossRate,start,openDoorCost,openDoorCostRate,MaxDistributeRidus,veichleSpeed,veichleMaxW,Popsize,Iteration,Pc,Pm,pos,demandArr,timeWindows,server,step,posInfo);
end

📜📢🌈参考文献🌈📢📜

[1]蒋然.改进遗传算法在TSP问题中的应用[J].软件导刊,2016,15(12):127-129.

相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。

热门文章

最新文章