🍁🥬🕒摘要🕒🥬🍁
物流业作为国家经济体系的重要组成部分,费用居高不下,特别是运输费用达到物流费用的一半以上,是导致物流成本过高的重要因素。旅行商问题是车辆路径问题的特例,是实现车辆路径优化的关键。
✨🔎⚡运行结果⚡🔎✨
💂♨️👨🎓Matlab代码👨🎓♨️💂
clc clear close all Fixedcosts = 150; %固定成本 nuitTransCost =2.4; %单位运输成本 coldRate=1.3; %制冷率 congesteRate=1.5; %拥堵率 goodLossRate = 0.39; %货损率 openDoorCost = 30; %一次开门费用 openDoorCostRate = 0.26; %开门费率 MaxDistributeRidus = 15; %最大费送半径 veichleSpeed = 60; %车辆速度 veichleMaxW = 200; %车辆最大装载量 Popsize=500; %染色体数量 Iteration=100; %迭代次数 Pc=0.75; %交叉率 0-1之间 Pm=0.7; %变异率 0-1之间 step = 0; % 初始化阶段 start = [40 50]; %中心点坐标 pos =load('坐标.txt'); demandArr = load('需求量.txt'); timeWindows = load('时间窗.txt'); server = load('卸货时间.txt'); posInfo = []; [totalIn,disTribtePoint] = gaMain(Fixedcosts,nuitTransCost,coldRate,congesteRate,goodLossRate,start,openDoorCost,openDoorCostRate,MaxDistributeRidus,veichleSpeed,veichleMaxW,Popsize,Iteration,Pc,Pm,pos,demandArr,timeWindows,server,step,posInfo); [totalIn,~]=sortrows(totalIn,3); op = 1; while totalIn(op,3)<0 totalIn(op,3) = totalIn(op,3)*(-1); op = op +1; end [totalIn,I]=sortrows(totalIn,3); inPutNew = totalIn; distributePos = []; for n=1:max(inPutNew(:,3)) distributePos = [distributePos ;inPutNew(find(inPutNew(:,3) == n,1),:)]; end save('distributePos','distributePos'); [inSize,ii] = size(inPutNew); jPos = 1; save('jPos','jPos'); save('inSize','inSize'); save('inPutNew','inPutNew'); % for i =1:disTribtePoint -1 for i =1:disTribtePoint save('i','i');save('disTribtePoint','disTribtePoint');save('jPos','jPos'); clear; load('jPos','jPos');load('inSize','inSize');load('inPutNew','inPutNew');load('i','i');load('disTribtePoint','disTribtePoint'); step = i; ho = 0; for j = jPos:inSize if inPutNew(j,3) == i ho = ho +1; end end jPos = jPos + ho; realIn = inPutNew(jPos-ho:(jPos-1),:); Fixedcosts = 80; %固定成本 nuitTransCost =1; %单位运输成本 coldRate=0; %制冷率 congesteRate=0; %拥堵率 goodLossRate = 0.5; %货损率 openDoorCost = 0; %一次开门费用 openDoorCostRate = 0; %开门费率 MaxDistributeRidus = 9999; %最大配送半径 veichleSpeed = 25; %车辆速度 veichleMaxW = 70; %车辆最大装载量 Popsize=100; %染色体数量 Iteration=100; %迭代次数 Pc=0.75; %交叉率 0-1之间 Pm=0.7; %变异率 0-1之间 demandArr = load('需求量.txt'); timeWindows = load('时间窗.txt'); server = load('卸货时间.txt'); [demandArr,timeWindows,server] = dealExat(demandArr,timeWindows,server,realIn); [realInSize,~] = size(realIn); oneRowp = [1:realInSize-1]'; realInp = [realIn(2:end,:) oneRowp]; posInfo = realInp(:,4:5); pos =realIn(:,1:2); start = pos(1, :); pos(1,:) = []; gaMain(Fixedcosts,nuitTransCost,coldRate,congesteRate,goodLossRate,start,openDoorCost,openDoorCostRate,MaxDistributeRidus,veichleSpeed,veichleMaxW,Popsize,Iteration,Pc,Pm,pos,demandArr,timeWindows,server,step,posInfo); end
📜📢🌈参考文献🌈📢📜
[1]蒋然.改进遗传算法在TSP问题中的应用[J].软件导刊,2016,15(12):127-129.