遗传算法在TSP中的两步求解(Matlab代码实现)

简介: 遗传算法在TSP中的两步求解(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

物流业作为国家经济体系的重要组成部分,费用居高不下,特别是运输费用达到物流费用的一半以上,是导致物流成本过高的重要因素。旅行商问题是车辆路径问题的特例,是实现车辆路径优化的关键。

✨🔎⚡运行结果⚡🔎✨

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

clc
clear
close all
Fixedcosts = 150;                   %固定成本
nuitTransCost =2.4;                 %单位运输成本
coldRate=1.3;                       %制冷率
congesteRate=1.5;                   %拥堵率
goodLossRate = 0.39;                %货损率
openDoorCost = 30;                  %一次开门费用
openDoorCostRate = 0.26;            %开门费率
MaxDistributeRidus = 15;            %最大费送半径
veichleSpeed = 60;                  %车辆速度
veichleMaxW = 200;                  %车辆最大装载量
Popsize=500;                        %染色体数量
Iteration=100;                      %迭代次数
Pc=0.75;                            %交叉率 0-1之间
Pm=0.7;                             %变异率 0-1之间
step = 0;                           % 初始化阶段
start = [40 50];                    %中心点坐标
pos =load('坐标.txt');
demandArr = load('需求量.txt');
timeWindows = load('时间窗.txt');
server = load('卸货时间.txt');
posInfo = [];
[totalIn,disTribtePoint] = gaMain(Fixedcosts,nuitTransCost,coldRate,congesteRate,goodLossRate,start,openDoorCost,openDoorCostRate,MaxDistributeRidus,veichleSpeed,veichleMaxW,Popsize,Iteration,Pc,Pm,pos,demandArr,timeWindows,server,step,posInfo);
[totalIn,~]=sortrows(totalIn,3);
op = 1;
    while totalIn(op,3)<0
        totalIn(op,3) = totalIn(op,3)*(-1);
        op = op +1;
    end
[totalIn,I]=sortrows(totalIn,3);
inPutNew = totalIn;
distributePos = [];
for n=1:max(inPutNew(:,3))
    distributePos = [distributePos ;inPutNew(find(inPutNew(:,3) == n,1),:)];
end
save('distributePos','distributePos');
[inSize,ii] = size(inPutNew);
jPos = 1;
save('jPos','jPos');
save('inSize','inSize');
save('inPutNew','inPutNew');
% for i =1:disTribtePoint -1
for i =1:disTribtePoint
    save('i','i');save('disTribtePoint','disTribtePoint');save('jPos','jPos');
    clear;
    load('jPos','jPos');load('inSize','inSize');load('inPutNew','inPutNew');load('i','i');load('disTribtePoint','disTribtePoint');
    step = i;
    ho = 0;
    for j = jPos:inSize
        if inPutNew(j,3) == i
            ho = ho +1;
        end
    end
    jPos = jPos + ho;
    realIn = inPutNew(jPos-ho:(jPos-1),:);
Fixedcosts = 80;                   %固定成本
nuitTransCost =1;                  %单位运输成本
coldRate=0;                        %制冷率
congesteRate=0;                    %拥堵率
goodLossRate = 0.5;                %货损率
openDoorCost = 0;                  %一次开门费用
openDoorCostRate = 0;              %开门费率
MaxDistributeRidus = 9999;         %最大配送半径
veichleSpeed = 25;                 %车辆速度
veichleMaxW = 70;                  %车辆最大装载量
Popsize=100;                       %染色体数量
Iteration=100;                     %迭代次数
Pc=0.75;                           %交叉率 0-1之间
Pm=0.7;                            %变异率 0-1之间
demandArr = load('需求量.txt');
timeWindows = load('时间窗.txt');
server = load('卸货时间.txt');
[demandArr,timeWindows,server] = dealExat(demandArr,timeWindows,server,realIn);
[realInSize,~] =  size(realIn);
oneRowp = [1:realInSize-1]';
realInp = [realIn(2:end,:) oneRowp];
posInfo = realInp(:,4:5);
pos =realIn(:,1:2);
start = pos(1, :);
pos(1,:) = [];
gaMain(Fixedcosts,nuitTransCost,coldRate,congesteRate,goodLossRate,start,openDoorCost,openDoorCostRate,MaxDistributeRidus,veichleSpeed,veichleMaxW,Popsize,Iteration,Pc,Pm,pos,demandArr,timeWindows,server,step,posInfo);
end

📜📢🌈参考文献🌈📢📜

[1]蒋然.改进遗传算法在TSP问题中的应用[J].软件导刊,2016,15(12):127-129.

相关文章
|
5天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
10天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
15天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
15天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
15天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章

下一篇
无影云桌面