m基于OFDM+QPSK和LDPC编译码通信链路matlab性能仿真,包括Costas载波同步和gardner定时同步

简介: m基于OFDM+QPSK和LDPC编译码通信链路matlab性能仿真,包括Costas载波同步和gardner定时同步

1.算法仿真效果
matlab2013b仿真结果如下:

a825382f5cdd1d847bfff804a7033eef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
636351eae05374a59f1ecfcfd40458d9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
f7b059a4ca80c9bc74f91cfcd5a14b03_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
298db686a8bdfc815dddd7550ef2fbfc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于OFDM+QPSK和LDPC编码的通信链路是一种常用的数字通信系统,用于实现高速、可靠的数据传输。该系统结合了正交频分复用(OFDM)、四相移键控(QPSK)调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括Costas环载波同步和Gardner环定时同步模块,用于实现信号的载波频率和定时偏移的同步。

   基于OFDM+QPSK和LDPC编码的通信链路通过将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。

   基于OFDM+QPSK和LDPC编码的通信链路是一种常用的数字通信系统,用于实现高速、可靠的数据传输。该系统结合了正交频分复用(OFDM)、四相移键控(QPSK)调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括Costas环载波同步和Gardner环定时同步模块,用于实现信号的载波频率和定时偏移的同步。

系统原理
基于OFDM+QPSK和LDPC编码的通信链路通过将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。

OFDM+QPSK调制
OFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。OFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。OFDM+QPSK调制将QPSK调制应用于每个子载波上的信号,实现了高效的频谱利用和抗干扰能力。

ac3d43b16c7fe060cab9a8b21e26e8ee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

LDPC编码和解码
LDPC编码是一种误码控制编码技术,通过稀疏校验矩阵构建编码器和解码器。编码器将输入数据和校验矩阵进行矩阵运算,生成编码后的数据。解码器使用迭代解码算法,通过消息传递的方式对接收到的编码数据进行解码。LDPC编码可以提供较高的纠错能力和编码效率。

输入数据与校验矩阵的运算:

ea1ec2a973a2a00bd4b530ec236d463d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Costas环载波同步
Costas环载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。Costas环载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。

59a4c593e9af9e19a7da62fc2dc136b2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   实现该通信链路的难点在于系统各个环节的设计和优化。需要设计合适的OFDM子载波数量、保护间隔和LDPC编码参数,以及合适的Costas环和Gardner环的参数。同时,需要解决载波同步和定时同步的反馈控制问题,确保接收信号的准确解调。此外,LDPC编码的迭代解码算法和调试也是实现过程中的挑战。基于OFDM+QPSK和LDPC编码的通信链路涉及OFDM调制、QPSK调制、LDPC编码与解码以及载波同步和定时同步等环节。通过合适的参数选择和优化,可以实现高速、可靠的数据传输,并应用于各种通信系统中。

3.MATLAB核心程序
```rece = fft(rece);
%载波同步环
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%锁相环处理过程如下
Discriminator_Out = zeros(carlen nsamp,1);
Freq_Control = zeros(carlen
nsamp,1);
PLL_Phase_Part = zeros(carlen nsamp,1); %锁相环频率
PLL_Freq_Part = zeros(carlen
nsamp,1); %锁相环相位
WC_frame = zeros(1,carlen * nsamp);
NCO_Phase = 0;
mul = 2;

for i = 1 + mul:carlen - mul
.................................................................................
end
end

figure(1);
subplot(211)
plot(WC_frame((1+mul)nsamp:end-mulnsamp));
grid on;
title('锁相环频率响应曲线');
subplot(212)
plot(PLL_Phase_Part((1+mul)nsamp:end-mulnsamp)*180/pi);
title('锁相环相位响应曲线');
grid on;

num1 = symerr(sign(I_D(comps1:compf1)) , sign(dataoutI(comps1:compf1)));
num2 = symerr(sign(I_D(comps1:compf1)) , -sign(dataoutI(comps1:compf1)));
num3 = symerr(sign(I_D(comps1:compf1)) , sign(dataoutQ(comps1:compf1)));
num4 = symerr(sign(I_D(comps1:compf1)) , -sign(dataoutQ(comps1:compf1)));
numI = [num1,num2,num3,num4];
num = min(numI);

if num1 == num
dataout_I = dataoutI;
elseif num2 == num
dataout_I = -dataoutI;
elseif num3 == num
dataout_I = dataoutQ;
else
dataout_I = -dataoutQ;
end
num1 = symerr(sign(Q_D(comps2:compf2)) , sign(dataoutQ(comps2:compf2)));
num2 = symerr(sign(Q_D(comps2:compf2)) , -sign(dataoutQ(comps2:compf2)));
num3 = symerr(sign(Q_D(comps2:compf2)) , sign(dataoutI(comps2:compf2)));
num4 = symerr(sign(Q_D(comps2:compf2)) , -sign(dataoutI(comps2:compf2)));
numQ = [num1,num2,num3,num4];
num = min(numQ);

if num1 == num
dataout_Q = dataoutQ;
elseif num2 == num
dataout_Q = -dataoutQ;
elseif num3 == num
dataout_Q = dataoutI;
else
dataout_Q = -dataoutI;
end
```

相关文章
|
2月前
|
算法 数据安全/隐私保护
基于SC-FDE单载波频域均衡MQAM通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容主要介绍基于MATLAB的SC-FDE单载波频域均衡通信链路设计与实现,包括UW序列设计、QAM调制、帧同步、定时同步、载波同步、SNR估计和MMSE信道估计等关键环节。通过仿真(MATLAB 2022a),验证了系统的可行性和性能。核心程序展示了不同QAM调制方式(如256QAM)及同步算法的具体实现,并通过绘图展示帧同步、定时同步和频偏补偿效果。此研究为优化通信系统性能提供了理论与实践基础。
55 0
|
2月前
|
数据可视化 数据安全/隐私保护 C++
开关磁阻电机(SRM)系统的matlab性能仿真与分析
本课题基于MATLAB 2022a对开关磁阻电机(SRM)系统进行性能仿真与分析,涵盖平均转矩、转矩脉动、自感与互感、功率及效率等关键参数的对比研究。通过程序仿真,生成了相电流、转子角度、机械转速等多维度数据关系图。SRM以其无刷、无永磁体的特点,具备高可靠性和低成本优势,其工作原理基于磁阻最小原则,通过控制定子绕组电流实现连续旋转运动。核心程序实现了不同电流下平均转矩的计算与可视化,为SRM优化设计提供了理论依据。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
1月前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
2月前
|
编解码 算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+Viterbi编解码图传通信系统matlab仿真,包括载波定时同步,信道估计
本内容展示了基于DVB-T的COFDM+16QAM+Viterbi编解码通信链路的算法仿真与实现。通过Matlab2022a仿真,验证了系统性能(附无水印完整代码运行结果截图)。该系统结合COFDM、16QAM调制和Viterbi编解码技术,具备高效传输与抗多径衰落能力。核心程序涵盖加循环前缀、瑞利多径衰落信道模拟、符号同步、细定时估计等关键步骤,并实现了图像数据的二进制转换与RGB合并展示。理论部分详细解析了载波同步、定时同步及信道估计模块的功能与原理,为数字视频广播系统的开发提供了全面参考。
75 19
|
2月前
|
算法 数据安全/隐私保护
基于SC-FDE单载波频域均衡的MPSK通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容展示了基于MATLAB 2022a的SC-FDE单载波频域均衡通信链路仿真,包括UW序列设计、QPSK调制、帧同步、定时与载波同步、SNR估计及MMSE信道估计等关键环节。通过8张仿真结果图验证了系统性能。理论部分详述了单载波频域均衡技术原理,以及各模块的设计与实现步骤。核心程序代码涵盖调制方式选择(如QPSK)、UW序列生成、数据帧构建、信道模拟及同步补偿等操作,为高效数据传输提供了完整解决方案。
78 19
|
4月前
|
算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计
### 简介 本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。 核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。
164 76
|
3月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
52 6
|
5月前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
136 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
4月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
87 20