m基于OFDM+QPSK和LDPC编译码通信链路matlab性能仿真,包括Costas载波同步和gardner定时同步

简介: m基于OFDM+QPSK和LDPC编译码通信链路matlab性能仿真,包括Costas载波同步和gardner定时同步

1.算法仿真效果
matlab2013b仿真结果如下:

a825382f5cdd1d847bfff804a7033eef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
636351eae05374a59f1ecfcfd40458d9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
f7b059a4ca80c9bc74f91cfcd5a14b03_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
298db686a8bdfc815dddd7550ef2fbfc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于OFDM+QPSK和LDPC编码的通信链路是一种常用的数字通信系统,用于实现高速、可靠的数据传输。该系统结合了正交频分复用(OFDM)、四相移键控(QPSK)调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括Costas环载波同步和Gardner环定时同步模块,用于实现信号的载波频率和定时偏移的同步。

   基于OFDM+QPSK和LDPC编码的通信链路通过将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。

   基于OFDM+QPSK和LDPC编码的通信链路是一种常用的数字通信系统,用于实现高速、可靠的数据传输。该系统结合了正交频分复用(OFDM)、四相移键控(QPSK)调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括Costas环载波同步和Gardner环定时同步模块,用于实现信号的载波频率和定时偏移的同步。

系统原理
基于OFDM+QPSK和LDPC编码的通信链路通过将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。

OFDM+QPSK调制
OFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。OFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。OFDM+QPSK调制将QPSK调制应用于每个子载波上的信号,实现了高效的频谱利用和抗干扰能力。

ac3d43b16c7fe060cab9a8b21e26e8ee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

LDPC编码和解码
LDPC编码是一种误码控制编码技术,通过稀疏校验矩阵构建编码器和解码器。编码器将输入数据和校验矩阵进行矩阵运算,生成编码后的数据。解码器使用迭代解码算法,通过消息传递的方式对接收到的编码数据进行解码。LDPC编码可以提供较高的纠错能力和编码效率。

输入数据与校验矩阵的运算:

ea1ec2a973a2a00bd4b530ec236d463d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Costas环载波同步
Costas环载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。Costas环载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。

59a4c593e9af9e19a7da62fc2dc136b2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   实现该通信链路的难点在于系统各个环节的设计和优化。需要设计合适的OFDM子载波数量、保护间隔和LDPC编码参数,以及合适的Costas环和Gardner环的参数。同时,需要解决载波同步和定时同步的反馈控制问题,确保接收信号的准确解调。此外,LDPC编码的迭代解码算法和调试也是实现过程中的挑战。基于OFDM+QPSK和LDPC编码的通信链路涉及OFDM调制、QPSK调制、LDPC编码与解码以及载波同步和定时同步等环节。通过合适的参数选择和优化,可以实现高速、可靠的数据传输,并应用于各种通信系统中。

3.MATLAB核心程序
```rece = fft(rece);
%载波同步环
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%锁相环处理过程如下
Discriminator_Out = zeros(carlen nsamp,1);
Freq_Control = zeros(carlen
nsamp,1);
PLL_Phase_Part = zeros(carlen nsamp,1); %锁相环频率
PLL_Freq_Part = zeros(carlen
nsamp,1); %锁相环相位
WC_frame = zeros(1,carlen * nsamp);
NCO_Phase = 0;
mul = 2;

for i = 1 + mul:carlen - mul
.................................................................................
end
end

figure(1);
subplot(211)
plot(WC_frame((1+mul)nsamp:end-mulnsamp));
grid on;
title('锁相环频率响应曲线');
subplot(212)
plot(PLL_Phase_Part((1+mul)nsamp:end-mulnsamp)*180/pi);
title('锁相环相位响应曲线');
grid on;

num1 = symerr(sign(I_D(comps1:compf1)) , sign(dataoutI(comps1:compf1)));
num2 = symerr(sign(I_D(comps1:compf1)) , -sign(dataoutI(comps1:compf1)));
num3 = symerr(sign(I_D(comps1:compf1)) , sign(dataoutQ(comps1:compf1)));
num4 = symerr(sign(I_D(comps1:compf1)) , -sign(dataoutQ(comps1:compf1)));
numI = [num1,num2,num3,num4];
num = min(numI);

if num1 == num
dataout_I = dataoutI;
elseif num2 == num
dataout_I = -dataoutI;
elseif num3 == num
dataout_I = dataoutQ;
else
dataout_I = -dataoutQ;
end
num1 = symerr(sign(Q_D(comps2:compf2)) , sign(dataoutQ(comps2:compf2)));
num2 = symerr(sign(Q_D(comps2:compf2)) , -sign(dataoutQ(comps2:compf2)));
num3 = symerr(sign(Q_D(comps2:compf2)) , sign(dataoutI(comps2:compf2)));
num4 = symerr(sign(Q_D(comps2:compf2)) , -sign(dataoutI(comps2:compf2)));
numQ = [num1,num2,num3,num4];
num = min(numQ);

if num1 == num
dataout_Q = dataoutQ;
elseif num2 == num
dataout_Q = -dataoutQ;
elseif num3 == num
dataout_Q = dataoutI;
else
dataout_Q = -dataoutI;
end
```

相关文章
|
6天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
15天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
1天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
1天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
10 3
|
6天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
12天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章