m基于OFDM+QPSK和LDPC编译码通信链路matlab性能仿真,包括Costas载波同步和gardner定时同步

简介: m基于OFDM+QPSK和LDPC编译码通信链路matlab性能仿真,包括Costas载波同步和gardner定时同步

1.算法仿真效果
matlab2013b仿真结果如下:

a825382f5cdd1d847bfff804a7033eef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
636351eae05374a59f1ecfcfd40458d9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
f7b059a4ca80c9bc74f91cfcd5a14b03_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
298db686a8bdfc815dddd7550ef2fbfc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于OFDM+QPSK和LDPC编码的通信链路是一种常用的数字通信系统,用于实现高速、可靠的数据传输。该系统结合了正交频分复用(OFDM)、四相移键控(QPSK)调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括Costas环载波同步和Gardner环定时同步模块,用于实现信号的载波频率和定时偏移的同步。

   基于OFDM+QPSK和LDPC编码的通信链路通过将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。

   基于OFDM+QPSK和LDPC编码的通信链路是一种常用的数字通信系统,用于实现高速、可靠的数据传输。该系统结合了正交频分复用(OFDM)、四相移键控(QPSK)调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括Costas环载波同步和Gardner环定时同步模块,用于实现信号的载波频率和定时偏移的同步。

系统原理
基于OFDM+QPSK和LDPC编码的通信链路通过将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。

OFDM+QPSK调制
OFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。OFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。QPSK调制将每两个比特映射到一个复数点上,实现了四种相位的调制。OFDM+QPSK调制将QPSK调制应用于每个子载波上的信号,实现了高效的频谱利用和抗干扰能力。

ac3d43b16c7fe060cab9a8b21e26e8ee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

LDPC编码和解码
LDPC编码是一种误码控制编码技术,通过稀疏校验矩阵构建编码器和解码器。编码器将输入数据和校验矩阵进行矩阵运算,生成编码后的数据。解码器使用迭代解码算法,通过消息传递的方式对接收到的编码数据进行解码。LDPC编码可以提供较高的纠错能力和编码效率。

输入数据与校验矩阵的运算:

ea1ec2a973a2a00bd4b530ec236d463d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Costas环载波同步
Costas环载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。Costas环载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。

59a4c593e9af9e19a7da62fc2dc136b2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   实现该通信链路的难点在于系统各个环节的设计和优化。需要设计合适的OFDM子载波数量、保护间隔和LDPC编码参数,以及合适的Costas环和Gardner环的参数。同时,需要解决载波同步和定时同步的反馈控制问题,确保接收信号的准确解调。此外,LDPC编码的迭代解码算法和调试也是实现过程中的挑战。基于OFDM+QPSK和LDPC编码的通信链路涉及OFDM调制、QPSK调制、LDPC编码与解码以及载波同步和定时同步等环节。通过合适的参数选择和优化,可以实现高速、可靠的数据传输,并应用于各种通信系统中。

3.MATLAB核心程序
```rece = fft(rece);
%载波同步环
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%锁相环处理过程如下
Discriminator_Out = zeros(carlen nsamp,1);
Freq_Control = zeros(carlen
nsamp,1);
PLL_Phase_Part = zeros(carlen nsamp,1); %锁相环频率
PLL_Freq_Part = zeros(carlen
nsamp,1); %锁相环相位
WC_frame = zeros(1,carlen * nsamp);
NCO_Phase = 0;
mul = 2;

for i = 1 + mul:carlen - mul
.................................................................................
end
end

figure(1);
subplot(211)
plot(WC_frame((1+mul)nsamp:end-mulnsamp));
grid on;
title('锁相环频率响应曲线');
subplot(212)
plot(PLL_Phase_Part((1+mul)nsamp:end-mulnsamp)*180/pi);
title('锁相环相位响应曲线');
grid on;

num1 = symerr(sign(I_D(comps1:compf1)) , sign(dataoutI(comps1:compf1)));
num2 = symerr(sign(I_D(comps1:compf1)) , -sign(dataoutI(comps1:compf1)));
num3 = symerr(sign(I_D(comps1:compf1)) , sign(dataoutQ(comps1:compf1)));
num4 = symerr(sign(I_D(comps1:compf1)) , -sign(dataoutQ(comps1:compf1)));
numI = [num1,num2,num3,num4];
num = min(numI);

if num1 == num
dataout_I = dataoutI;
elseif num2 == num
dataout_I = -dataoutI;
elseif num3 == num
dataout_I = dataoutQ;
else
dataout_I = -dataoutQ;
end
num1 = symerr(sign(Q_D(comps2:compf2)) , sign(dataoutQ(comps2:compf2)));
num2 = symerr(sign(Q_D(comps2:compf2)) , -sign(dataoutQ(comps2:compf2)));
num3 = symerr(sign(Q_D(comps2:compf2)) , sign(dataoutI(comps2:compf2)));
num4 = symerr(sign(Q_D(comps2:compf2)) , -sign(dataoutI(comps2:compf2)));
numQ = [num1,num2,num3,num4];
num = min(numQ);

if num1 == num
dataout_Q = dataoutQ;
elseif num2 == num
dataout_Q = -dataoutQ;
elseif num3 == num
dataout_Q = dataoutI;
else
dataout_Q = -dataoutI;
end
```

相关文章
|
21天前
|
数据可视化
基于MATLAB的OFDM调制发射与接收仿真
基于MATLAB的OFDM调制发射与接收仿真
|
2月前
|
传感器 人工智能 算法
【天线】基于matlab超越对角线增益辅助的单天线和多天线链路中的信噪比最大化研究(Matlab代码实现)
【天线】基于matlab超越对角线增益辅助的单天线和多天线链路中的信噪比最大化研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 5G
【提高晶格缩减(LR)辅助预编码中VP的性能】向量扰动(VP)预编码在下行链路中多用户通信系统中的应用(Matlab代码实现)
【提高晶格缩减(LR)辅助预编码中VP的性能】向量扰动(VP)预编码在下行链路中多用户通信系统中的应用(Matlab代码实现)
|
7月前
|
算法 数据安全/隐私保护
基于SC-FDE单载波频域均衡MQAM通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容主要介绍基于MATLAB的SC-FDE单载波频域均衡通信链路设计与实现,包括UW序列设计、QAM调制、帧同步、定时同步、载波同步、SNR估计和MMSE信道估计等关键环节。通过仿真(MATLAB 2022a),验证了系统的可行性和性能。核心程序展示了不同QAM调制方式(如256QAM)及同步算法的具体实现,并通过绘图展示帧同步、定时同步和频偏补偿效果。此研究为优化通信系统性能提供了理论与实践基础。
161 0
|
3月前
|
算法 数据安全/隐私保护
基于OFDM的无人机中继通信链路matlab误码率仿真
本资源包含OFDM算法在无人机中继通信中的仿真与实现,涵盖调制解调原理、循环前缀作用及中继功率、飞行高度对通信性能的影响。配套Matlab程序(2024b/2022a),含详细注释与操作视频,完整运行无水印。
|
4月前
|
编解码
Matlab实现OFDM编解码,交织编码,卷积编码,LS信道估计,块状导频
Matlab实现OFDM编解码,交织编码,卷积编码,LS信道估计,块状导频
144 0
|
7月前
|
编解码 算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+Viterbi编解码图传通信系统matlab仿真,包括载波定时同步,信道估计
本内容展示了基于DVB-T的COFDM+16QAM+Viterbi编解码通信链路的算法仿真与实现。通过Matlab2022a仿真,验证了系统性能(附无水印完整代码运行结果截图)。该系统结合COFDM、16QAM调制和Viterbi编解码技术,具备高效传输与抗多径衰落能力。核心程序涵盖加循环前缀、瑞利多径衰落信道模拟、符号同步、细定时估计等关键步骤,并实现了图像数据的二进制转换与RGB合并展示。理论部分详细解析了载波同步、定时同步及信道估计模块的功能与原理,为数字视频广播系统的开发提供了全面参考。
126 19
|
7月前
|
算法 数据安全/隐私保护
基于SC-FDE单载波频域均衡的MPSK通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容展示了基于MATLAB 2022a的SC-FDE单载波频域均衡通信链路仿真,包括UW序列设计、QPSK调制、帧同步、定时与载波同步、SNR估计及MMSE信道估计等关键环节。通过8张仿真结果图验证了系统性能。理论部分详述了单载波频域均衡技术原理,以及各模块的设计与实现步骤。核心程序代码涵盖调制方式选择(如QPSK)、UW序列生成、数据帧构建、信道模拟及同步补偿等操作,为高效数据传输提供了完整解决方案。
135 19
|
22天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
22天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
139 14

热门文章

最新文章

下一篇
oss教程