Echart开发数据格式dataset数据集的使用

简介: Echart开发数据格式dataset数据集的使用

option = {
    xAxis: {
        type: 'category',
        data: ['Matcha Latte', 'Milk Tea', 'Cheese Cocoa', 'Walnut Brownie']
    },
    yAxis: {},
    series: [
        {
            type: 'bar',
            name: '2015',
            data: [89.3, 92.1, 94.4, 85.4]
        },
        {
            type: 'bar',
            name: '2016',
            data: [95.8, 89.4, 91.2, 76.9]
        },
        {
            type: 'bar',
            name: '2017',
            data: [97.7, 83.1, 92.5, 78.1]
        }
    ]
}


option = {
    legend: {},
    tooltip: {},
    dataset: {
        source: [
            ['product', '2015', '2016', '2017'],
            ['Matcha Latte', 43.3, 85.8, 93.7],
            ['Milk Tea', 83.1, 73.4, 55.1],
            ['Cheese Cocoa', 86.4, 65.2, 82.5],
            ['Walnut Brownie', 72.4, 53.9, 39.1]
        ]
    },
    xAxis: {type: 'category'},
    yAxis: {},
    // Declare several bar series, each will be mapped
    // to a column of dataset.source by default.
    series: [
        {type: 'bar'},
        {type: 'bar'},
        {type: 'bar'}
    ]
};
  1. 能够贴近这样的数据可视化常见思维方式:(I) 提供数据,(II) 指定数据到视觉的映射,从而形成图表。
  2. 数据和其他配置可以被分离开来。数据常变,其他配置常不变,分开易于分别管理。
  3. 数据可以被多个系列或者组件复用,对于大数据量的场景,不必为每个系列创建一份数据。
  4. 支持更多的数据的常用格式,例如二维数组、对象数组等,一定程度上避免使用者为了数据格式而进行转换。


lockdatav done!

相关文章
|
6月前
|
数据可视化 Python
python数据可视化 - matplotlib专题:带数据标签的双batch的Bar图绘制示例
python数据可视化 - matplotlib专题:带数据标签的双batch的Bar图绘制示例
77 0
|
数据可视化
ShapeNet数据集及dataset代码分析
ShapeNet数据集及dataset代码分析
634 0
|
6月前
|
数据采集 PyTorch 算法框架/工具
PyTorch基础之数据模块Dataset、DataLoader用法详解(附源码)
PyTorch基础之数据模块Dataset、DataLoader用法详解(附源码)
1014 0
|
1月前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
60 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
2月前
|
数据采集 存储 数据处理
通过load->model()加载数据模型:在采集中实现动态数据处理
本文介绍了在现代网络爬虫技术中,动态数据处理的重要性和实现方法。文章以采集小红书短视频为例,详细讲解了如何通过`load->model()`方法加载数据模型来处理动态数据。首先,强调了动态数据处理在爬虫技术中的必要性,尤其是对于需要实时更新或用户交互的网页。接着,通过安装必要的Python库,使用代理IP技术,设置User-Agent和Cookie,以及动态加载数据模型的步骤,展示了如何构建一个高效的爬虫系统。文章还提供了完整的代码示例,包括环境准备、代理IP配置、请求头设置、数据模型加载和数据解析等关键步骤,成功应用于小红书短视频数据的采集。
97 13
通过load->model()加载数据模型:在采集中实现动态数据处理
|
2月前
|
数据采集 数据可视化 数据挖掘
数据清洗(Data Cleaning)
数据清洗(Data Cleaning)
|
3月前
|
数据可视化
载入数据集, 查看数据属性,可视化
【8月更文挑战第8天】载入数据集, 查看数据属性,可视化。
41 3
|
6月前
|
SQL 存储 开发框架
C# DataSet结合FlyTreeView显示树状模型数据
C# DataSet结合FlyTreeView显示树状模型数据
203Echarts - 数据集(Simple Example of Dataset)
203Echarts - 数据集(Simple Example of Dataset)
23 0
|
机器学习/深度学习 人工智能 计算机视觉