掌握Python的常用模块numpy(一)

简介: 掌握Python的常用模块numpy(一)

NumPy 简介

什么是 NumPy?

NumPy 是用于处理数组的 python 库。

它还拥有在线性代数、傅立叶变换和矩阵领域中工作的函数。

NumPy 由 Travis Oliphant 于 2005 年创建。它是一个开源项目,您可以自由使用它。

NumPy 指的是数值 Python(Numerical Python)。

为何使用 NumPy?

在 Python 中,我们有满足数组功能的列表,但是处理起来很慢。

NumPy 旨在提供一个比传统 Python 列表快 50 倍的数组对象

NumPy 中的数组对象称为 ndarray,它提供了许多支持函数,使得利用 ndarray 非常容易。

数组在数据科学中非常常用,因为速度和资源非常重要。

数据科学:计算机科学的一个分支,研究如何存储、使用和分析数据以从中获取信息。

为什么 NumPy 比列表快?

与列表不同,NumPy 数组存储在内存中的一个连续位置,因此进程可以非常有效地访问和操纵它们。

这种行为在计算机科学中称为引用的局部性。

这是 NumPy 比列表更快的主要原因。它还经过了优化,可与最新的 CPU 体系结构一同使用。

NumPy 用哪种语言编写?

NumPy 是一个 Python 库,部分用 Python 编写,但是大多数需要快速计算的部分都是用 C 或 C ++ 编写的。

安装 NumPy

如果您已经在系统上安装了 PythonPIP,那么安装 NumPy 非常容易。

请使用这条命令安装它:

C:\Users\Your Name>pip install numpy

导入 NumPy

安装 NumPy 后,通过添加 import 关键字将其导入您的应用程序:

import numpy

现在,Numpy 已导入并可以使用。

实例

import numpy 
arr = numpy.array([1, 2, 3, 4, 5]) 
print(arr)

NumPy as np

NumPy 通常以 np 别名导入。

别名:在 Python 中,别名是用于引用同一事物的替代名称。

请在导入时使用 as 关键字创建别名:

import numpy as np

现在,可以将 NumPy 包称为 np 而不是 numpy

实例

import numpy as np 
arr = np.array([1, 2, 3, 4, 5]) 
print(arr)

检查 NumPy 版本

版本字符串存储在 __version__ 属性中。

实例

import numpy as np
print(np.__version__)

创建 NumPy ndarray 对象

NumPy 用于处理数组。 NumPy 中的数组对象称为 ndarray

我们可以使用 array() 函数创建一个 NumPy ndarray 对象。

实例

import numpy as np 
arr = np.array([1, 2, 3, 4, 5])
print(arr)
print(type(arr))

type(): 这个内置的 Python 函数告诉我们传递给它的对象的类型。像上面的代码一样,它表明 arrnumpy.ndarray 类型。

要创建 ndarray,我们可以将列表、元组或任何类似数组的对象传递给 array() 方法,然后它将被转换为 ndarray

实例

使用元组创建 NumPy 数组:

import numpy as np 
arr = np.array((1, 2, 3, 4, 5))
print(arr)

数组中的维

数组中的维是数组深度(嵌套数组)的一个级别。

嵌套数组:指的是将数组作为元素的数组。

0-D 数组

0-D 数组,或标量(Scalars),是数组中的元素。数组中的每个值都是一个 0-D 数组。

实例

用值 61 创建 0-D 数组:

import numpy as np
arr = np.array(61)
print(arr)

1-D 数组

其元素为 0-D 数组的数组,称为一维或 1-D 数组。

这是最常见和基础的数组。

实例

创建包含值 1、2、3、4、5、6 的 1-D 数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
print(arr)

2-D 数组

其元素为 1-D 数组的数组,称为 2-D 数组。

它们通常用于表示矩阵或二阶张量。

NumPy 有一个专门用于矩阵运算的完整子模块 numpy.mat

实例

创建包含值 1、2、3 和 4、5、6 两个数组的 2-D 数组:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)

检查维数?

NumPy 数组提供了 ndim 属性,该属性返回一个整数,该整数会告诉我们数组有多少维。

实例

检查数组有多少维:

import numpy as np
a = np.array(42)
b = np.array([1, 2, 3, 4, 5])
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(a.ndim) 
print(b.ndim) 
print(c.ndim) 
print(d.ndim)

NumPy 数组索引

访问数组元素

数组索引等同于访问数组元素。

您可以通过引用其索引号来访问数组元素。

NumPy 数组中的索引以 0 开头,这意味着第一个元素的索引为 0,第二个元素的索引为 1,以此类推。

实例

从以下数组中获取第一个元素:

import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[0])

实例

从以下数组中获取第二个元素:

import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[1])

实例

从以下数组中获取第三和第四个元素并将其相加:

import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[2] + arr[3])

NumPy 数据类型

Python 中的数据类型

默认情况下,Python 拥有以下数据类型:

strings - 用于表示文本数据,文本用引号引起来。例如 "ABCD"。

integer - 用于表示整数。例如 -1, -2, -3。

float - 用于表示实数。例如 1.2, 42.42。

boolean - 用于表示 True 或 False。

complex - 用于表示复平面中的数字。例如 1.0 + 2.0j,1.5 + 2.5j。

NumPy 中的数据类型

NumPy 有一些额外的数据类型,并通过一个字符引用数据类型,例如 i 代表整数,u 代表无符号整数等。

以下是 NumPy 中所有数据类型的列表以及用于表示它们的字符。

i - 整数

b - 布尔

u - 无符号整数

f - 浮点

c - 复合浮点数

m - timedelta

M - datetime

O - 对象

S - 字符串

U - unicode 字符串

V - 固定的其他类型的内存块 ( void )

检查数组的数据类型

NumPy 数组对象有一个名为 dtype 的属性,该属性返回数组的数据类型:

实例

获取数组对象的数据类型

import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr.dtype)

实例

获取包含字符串的数组的数据类型:

import numpy as np
arr = np.array(['apple', 'banana', 'cherry'])
print(arr.dtype)

用已定义的数据类型创建数组

我们使用 array() 函数来创建数组,该函数可以使用可选参数:dtype,它允许我们定义数组元素的预期数据类型:

实例

用数据类型字符串创建数组:

import numpy as np
arr = np.array([1, 2, 3, 4], dtype='S')
print(arr)
print(arr.dtype)

对于 iufSU,我们也可以定义大小。

实例

创建数据类型为 4 字节整数的数组:

import numpy as np
arr = np.array([1, 2, 3, 4], dtype='i4')
print(arr)
print(arr.dtype)

转换已有数组的数据类型

更改现有数组的数据类型的最佳方法,是使用 astype() 方法复制该数组。

astype() 函数创建数组的副本,并允许您将数据类型指定为参数。

数据类型可以使用字符串指定,例如 'f' 表示浮点数,'i' 表示整数等。或者您也可以直接使用数据类型,例如 float 表示浮点数,int 表示整数。

实例

通过使用 'i' 作为参数值,将数据类型从浮点数更改为整数:

import numpy as np
arr = np.array([1.1, 2.1, 3.1])
newarr = arr.astype('i')
print(newarr)
print(newarr.dtype)
相关文章
|
3月前
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
158 62
|
2月前
|
Python
Python Internet 模块
Python Internet 模块。
133 74
|
3月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
141 63
|
3月前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
3月前
|
Python
Python的模块和包
总之,模块和包是 Python 编程中非常重要的概念,掌握它们可以帮助我们更好地组织和管理代码,提高开发效率和代码质量
133 61
|
3月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
3月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
1月前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
32 3
|
3月前
|
JavaScript 前端开发 Python
python中的OS模块的基本使用
欢迎来到瑞雨溪的博客,一名热爱JavaScript与Vue的大一学生。博客分享前端技术及全栈开发经验,持续更新中,期待您的关注和支持!🎉🎉🎉
51 0
|
3月前
|
JavaScript 前端开发 Python
python中的platform模块的基本使用
欢迎来到瑞雨溪的博客,一名热爱JavaScript与Vue的大一学生。博客分享前端技术,助你成长。关注我,持续更新中!🎉🎉🎉
47 0

热门文章

最新文章

推荐镜像

更多