分布式数据库HBase的安装部署和环境搭建的集群模式

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
云原生网关 MSE Higress,422元/月
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
简介: HBase是一个分布式数据库系统,能够支持高性能、高可靠性、高伸缩性的数据存储和读写操作。在大数据时代,HBase成为了一个越来越受欢迎的数据库选择。本文将介绍HBase的集群模式的安装部署和环境搭建,帮助开发者快速上手。

一、HBase集群模式安装部署 1.1 安装Java运行环境(JDK) HBase依赖于Java语言,因此首先需要安装JDK。下载并安装JDK,确保环境变量中包含JAVA_HOME。

1.2 下载HBase 从官网(https://github.com/hbase/hbase)下载HBase源码,并解压。

1.3 配置HBase环境变量 将HBASE_HOME和HBASE_USER_HOME环境变量设置为HBase解压后的目录。

1.4 编译HBase 进入HBase目录,使用以下命令编译:

Copy code

make

1.5 启动HBase 使用以下命令启动HBase:

Copy code

./start-hbase.sh

二、HBase环境搭建 2.1 部署HBase集群 在部署HBase集群之前,需要准备至少三台服务器,并将它们配置为主节点和从节点。主节点负责数据存储和读写操作,从节点负责数据备份和故障恢复。

2.2 创建HDFS存储 HBase使用HDFS作为底层存储,需要先创建HDFS集群。在每个节点上启动HDFS服务。

2.3 安装Zookeeper HBase使用Zookeeper作为协调服务,需要先安装Zookeeper并启动服务。

2.4 部署HBase 将HBase部署在Zookeeper集群上,使用以下命令:

Copy code

./start-hbase.sh -config hbase/conf/hbase-site.xml

2.5 测试HBase 使用HBase客户端测试HBase集群,例如:

Copy code

java.io.IOException: RegionServer is down        at org.apache.hadoop.hbase.client.ConnectionFactory.createConnection(ConnectionFactory.java:125)        at org.apache.hadoop.hbase.client.ConnectionFactory.createConnection(ConnectionFactory.java:95)        at org.apache.hadoop.hbase.client.ConnectionFactory.getConnection(ConnectionFactory.java:105)        at org.apache.hadoop.hbase.HBaseAdmin.createRegionServer(HBaseAdmin.java:274)        at org.apache.hadoop.hbase.HBaseAdmin.create(HBaseAdmin.java:251)        at com.example.HBaseTest.main(HBaseTest.java:10)

如果测试成功,将会看到HBase服务正常运行的输出。

目录
相关文章
|
5月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
6月前
|
存储 NoSQL 数据库
Redis 逻辑数据库与集群模式详解
Redis 是高性能内存键值数据库,广泛用于缓存与实时数据处理。本文深入解析 Redis 逻辑数据库与集群模式:逻辑数据库提供16个独立存储空间,适合小规模隔离;集群模式通过分布式架构支持高并发和大数据量,但仅支持 database 0。文章对比两者特性,讲解配置与实践注意事项,并探讨持久化及性能优化策略,助你根据需求选择最佳方案。
199 5
|
7月前
|
SQL 关系型数据库 数据库
【YashanDB知识库】OM仲裁节点故障后手工切换方案和yasom仲裁重新部署后重新纳管数据库集群方案
本文介绍了主备数据库集群的部署、OM仲裁故障切换及重新纳管的全过程。首先通过解压软件包并调整安装参数完成数据库集群部署,接着说明了在OM仲裁故障时的手动切换方案,包括关闭自动切换开关、登录备节点执行切换命令。最后详细描述了搭建新的yasom仲裁节点以重新纳管数据库集群的步骤,如生成配置文件、初始化进程、执行托管命令等,确保新旧系统无缝衔接,保障数据服务稳定性。
|
7月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
|
4月前
|
Cloud Native 关系型数据库 分布式数据库
客户说|知乎基于阿里云PolarDB,实现最大数据库集群云原生升级
近日,知乎最大的风控业务数据库集群,基于阿里云瑶池数据库完成了云原生技术架构的升级。此次升级不仅显著提升了系统的高可用性和性能上限,还大幅降低了底层资源成本。
|
6月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
|
6月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
6月前
|
SQL 存储 分布式数据库
分布式存储数据恢复—hbase和hive数据库数据恢复案例
分布式存储数据恢复环境: 16台某品牌R730xd服务器节点,每台服务器节点上有数台虚拟机。 虚拟机上部署Hbase和Hive数据库。 分布式存储故障: 数据库底层文件被误删除,数据库不能使用。要求恢复hbase和hive数据库。
208 12
|
7月前
|
存储 SQL 并行计算
【赵渝强老师】达梦数据库MPP集群的架构
达梦数据库提供大规模并行处理(MPP)架构,以低成本实现高性能并行计算,满足海量数据存储和复杂查询需求。DM MPP采用完全对等无共享体系,消除主节点瓶颈,通过多节点并行执行提升性能。其执行流程包括主EP生成计划、分发任务、各EP并行处理及结果汇总返回。为确保高可用性,建议结合数据守护部署。
168 0
|
18天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
56 3

热门文章

最新文章