一种对不同类型齐格勒-尼科尔斯 P-I-D 控制器调谐算法研究(Matlab代码实现)

简介: 一种对不同类型齐格勒-尼科尔斯 P-I-D 控制器调谐算法研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码及文章讲解


💥1 概述

如今,许多不同的控制器被用于工业和许多其他领域。一般来说,这些控制器可以分为两大类:

• 传统控制器 • 非常规控制器 作为传统控制器,我们可以计算多年来已知的控制器


,例如ON-OFF,P,PI,PD,PID所有不同的类型和实现。所有传统控制器的一个特点是,必须知道过程的数学模型才能设计控制器。

比例-积分-微分(PID)控制器是从上世纪初开始,在自动控制领域具有悠久历史的三任期控制器。由于其直观性和相对简单性,除了能够在各种过程中提供令人满意的性能外,它实际上已成为工业环境中的标准控制器。


📚2 运行结果


6aba771c20c143a1876c3ddb6e7c1f2a.png

56bfb04c170c43cdb967abac8ea95db8.png

f628608243b3476facaa700353424f5c.png

538879a1a8f54303ad3ccd07f474add5.png

fc391037be4b428b988d40ed69964704.png

524bbd8250374776b60c1e075a1b99e7.png

a10cc586581e469485f302f8a8dacd61.png

b5a2dbed22ac42279713d0ede5bd2b83.png

8062af65078e409eb86e64aff80c7591.png

4529db03de0d4a07814a3afa72428976.png

52f826eeb5c640e2a86e8c07588f1a03.png

70e80cb360e44efc8e253329e0d529a1.png

d2ea492bfb174465895813a26f8277bc.png

4619cc26fe5f4edcab3c5657c250f667.png

1345839383014bf4b90104c3370b64e7.png


部分代码:

%% Figure One %%
figure
[Gc_p,Kp_p,Ti_p,Td_p]=myzntune('P',[0.4167,0.76,1.96,10],'openloop')
[Gc_pi,Kp_pi,Ti_pi,Td_pi]=myzntune('PI',[0.4167,0.76,1.96,10],'openloop')
[Gc_pid,Kp_pid,Ti_pid,Td_pid]=myzntune('PID',[0.4167,0.76,1.96,10],'openloop')
                                step(feedback(series(Gc_p,Gp),1),feedback(series(Gc_pi,Gp),1),feedback(series(Gc_pid,Gp),1))
                                title('Comparision of P,PI and PID Controllers (Tuned by Step Response Method)')
                                legend('Response of P Controller', 'Response of PI Controller', 'Response of PID Controller')
%% Figure Two %%
figure
% title('Comparision of PID and PID (With Filter )Controllers (Tuned by Step Response Method)')
[Gc_f,Kp_f,Ti_f,Td_f]=myzntune('PIDF',[0.4167,0.76,1.96,10],'openloop')
[Gcpid,Kppid,Tipid,Tdpid]=myzntune('PID',[0.4167,0.76,1.96,10],'openloop')
%                                 subplot(1,2,2)
                                step(feedback(series(Gcpid,Gp),1),feedback(series(Gc_f,Gp),1))
                                title('Comparision of PID and PID (With Filter )Controllers (Tuned by Step Response Method)')
                                legend('Response of PID Controller', 'Response of PID (With Filter)Controller')
%% Sustained Oscillation Method  %%
%% Figure Three %%
figure
[Gcp,Kpp,Tip,Tdp]=myzntune('P',[12.60,2.80,10],'closeloop')
[Gcpi,Kppi,Tipi,Tdpi]=myzntune('PI',[12.60,2.80,10],'closeloop')
[Gcpid1,Kppid1,Tipid1,Tdpid1]=myzntune('PID',[12.60,2.80,10],'closeloop')
                                step(feedback(series(Gcp,Gp),1),feedback(series(Gcpi,Gp),1),feedback(series(Gcpid1,Gp),1))
                                title('Comparision of P,PI and PID Controllers (Tuned by Sustained Oscillation Method)')
                                legend('Response of P Controller', 'Response of PI Controller', 'Response of PID Controller')
%% Figure Four %%    
figure
[Gcf,Kpf,Tif,Tdf]=myzntune('PIDF',[12.60,2.80,10],'closeloop')
                                step(feedback(series(Gcpid1,Gp),1),feedback(series(Gcf,Gp),1))
                                title('Comparision of PID and PID (With Filter )Controllers (Tuned by Sustained Oscillation Method)')
                                legend('Response of PID Controller', 'Response of PID (With Filter)Controller')
%% Cohen Coon %%
%% Figure Five %%   
figure
[Gcp_cc,Kpp_cc,Tip_cc,Tdp_cc]=myCohenCoon('P',[0.4167,0.76,1.96,10]);
[Gcpi_cc,Kppi_cc,Tipi_cc,Tdpi_cc]=myCohenCoon('PI',[0.4167,0.76,1.96,10]);
[Gcpd_cc,Kppd_cc,Tipd_cc,Tdpd_cc]=myCohenCoon('PD',[0.4167,0.76,1.96,10]);
[Gcpid_cc,Kppid_cc,Tipid_cc,Tdpid_cc]=myCohenCoon('PID',[0.4167,0.76,1.96,10]);
[Gcpidf_cc,Kppidf_cc,Tipidf_cc,Tdpidf_cc]=myCohenCoon('PIDF',[0.4167,0.76,1.96,10]);
step(feedback(series(Gcp_cc,Gp),1),feedback(series(Gcpi_cc,Gp),1),feedback(series(Gcpd_cc,Gp),1),feedback(series(Gcpid_cc,Gp),1),feedback(series(Gcpidf_cc,Gp),1))
title('System Response with Cohen Coon Tuned PID Controllers')
legend('Response of P Controller', 'Response of PI Controller', 'Response of PD Controller','Response of PID Controller','Response of PID(With Filter) Controller')
%% The Chien, Hrones and Reswick Tuning Algorithm %%
%%[ Gc,Kp,Ti,Td ] = mychrtune( type,data,method,overshoot)
%% Figure Six %%
figure
[Gcp0,Kpp0,Tip0,Tdp0]=mychrtune('P',[0.4167,0.76,1.96,10],'set',0)
[Gcp20,Kpp20,Tip20,Tdp20]=mychrtune('P',[0.4167,0.76,1.96,10],'set',20)
[Gcpi0,Kppi0,Tipi0,Tdpi0]=mychrtune('PI',[0.4167,0.76,1.96,10],'set',0)
[Gcpi20,Kppi20,Tipi20,Tdpi20]=mychrtune('PI',[0.4167,0.76,1.96,10],'set',20)
[Gcpid0,Kppid0,Tipid0,Tdpid0]=mychrtune('PID',[0.4167,0.76,1.96,10],'set',0)
[Gcpid20,Kppid20,Tipid20,Tdpid20]=mychrtune('PID',[0.4167,0.76,1.96,10],'set',20)
[Gcpidf0,Kppidf0,Tipidf0,Tdpidf0]=mychrtune('PIDF',[0.4167,0.76,1.96,10],'set',0)
[Gcpidf20,Kppidf20,Tipidf20,Tdpidf20]=mychrtune('PIDF',[0.4167,0.76,1.96,10],'set',20)
subplot(1,2,1)
% title('Set Point Regulation with 0% Overshoot ')
step(feedback(series(Gcp0,Gp),1),feedback(series(Gcpi0,Gp),1),feedback(series(Gcpid0,Gp),1),feedback(series(Gcpidf0,Gp),1))
title('System Response with Setpoint Regulation with 0% Overshoot by CHR tune PID Controller')
legend('Response of P Controller', 'Response of PI Controller','Response of PID Controller','Response of PID(With Filter) Controller')
subplot(1,2,2)
% title('Set Point Regulation with 20% Overshoot ')
% figure
step(feedback(series(Gcp20,Gp),1),feedback(series(Gcpi20,Gp),1),feedback(series(Gcpid20,Gp),1),feedback(series(Gcpidf20,Gp),1))
title('System Response with Setpoint Regulation with 20% Overshoot by CHR tune PID Controller')
legend('Response of P 20%Controller', 'Response of PI Controller','Response of PID Controller','Response of PID(With Filter) Controller')
%% FIgure Seven %%%
figure
[Gcp_d0,Kpp_d0,Tip_d0,Tdp_d0]=mychrtune('P',[0.4167,0.76,1.96,10],'distrub',0)
[Gcp_d20,Kpp_d20,Tip_d20,Tdp_d20]=mychrtune('P',[0.4167,0.76,1.96,10],'distrub',20)
[Gcpi_d0,Kppi_d0,Tipi_d0,Tdpi_d0]=mychrtune('PI',[0.4167,0.76,1.96,10],'distrub',0)
[Gcpi_d20,Kppi_d20,Tipi_d20,Tdpi_d20]=mychrtune('PI',[0.4167,0.76,1.96,10],'distrub',20)
[Gcpid_d0,Kppid_d0,Tipid_d0,Tdpid_d0]=mychrtune('PID',[0.4167,0.76,1.96,10],'distrub',0)
[Gcpid_d20,Kppid_d20,Tipid_d20,Tdpid_d20]=mychrtune('PID',[0.4167,0.76,1.96,10],'distrub',20)
[Gcpidf_d0,Kppidf_d0,Tipidf_d0,Tdpidf_d0]= mychrtune('PIDF',[0.4167,0.76,1.96,10],'distrub',0)
[Gcpidf_d20,Kppidf_d20,Tipidf_d20,Tdpidf_d20]=mychrtune('PIDF',[0.4167,0.76,1.96,10],'distrub',20)


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Srinibas Bhuyan (2023). A MATLAB Approach to study different types of Ziegler-Nichols P-I-D Controller Tuning Algorithm


🌈4 Matlab代码及文章讲解


相关文章
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
6天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
126 6
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
9天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
91 14
|
9天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
|
10天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
10天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
10天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
|
10天前
|
机器学习/深度学习 传感器 边缘计算
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
|
10天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
10天前
|
运维 算法
【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)
【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)

热门文章

最新文章