一种对不同类型齐格勒-尼科尔斯 P-I-D 控制器调谐算法研究(Matlab代码实现)

简介: 一种对不同类型齐格勒-尼科尔斯 P-I-D 控制器调谐算法研究(Matlab代码实现)
+关注继续查看

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码及文章讲解


💥1 概述

如今,许多不同的控制器被用于工业和许多其他领域。一般来说,这些控制器可以分为两大类:

• 传统控制器 • 非常规控制器 作为传统控制器,我们可以计算多年来已知的控制器


,例如ON-OFF,P,PI,PD,PID所有不同的类型和实现。所有传统控制器的一个特点是,必须知道过程的数学模型才能设计控制器。

比例-积分-微分(PID)控制器是从上世纪初开始,在自动控制领域具有悠久历史的三任期控制器。由于其直观性和相对简单性,除了能够在各种过程中提供令人满意的性能外,它实际上已成为工业环境中的标准控制器。


📚2 运行结果


6aba771c20c143a1876c3ddb6e7c1f2a.png

56bfb04c170c43cdb967abac8ea95db8.png

f628608243b3476facaa700353424f5c.png

538879a1a8f54303ad3ccd07f474add5.png

fc391037be4b428b988d40ed69964704.png

524bbd8250374776b60c1e075a1b99e7.png

a10cc586581e469485f302f8a8dacd61.png

b5a2dbed22ac42279713d0ede5bd2b83.png

8062af65078e409eb86e64aff80c7591.png

4529db03de0d4a07814a3afa72428976.png

52f826eeb5c640e2a86e8c07588f1a03.png

70e80cb360e44efc8e253329e0d529a1.png

d2ea492bfb174465895813a26f8277bc.png

4619cc26fe5f4edcab3c5657c250f667.png

1345839383014bf4b90104c3370b64e7.png


部分代码:

%% Figure One %%
figure
[Gc_p,Kp_p,Ti_p,Td_p]=myzntune('P',[0.4167,0.76,1.96,10],'openloop')
[Gc_pi,Kp_pi,Ti_pi,Td_pi]=myzntune('PI',[0.4167,0.76,1.96,10],'openloop')
[Gc_pid,Kp_pid,Ti_pid,Td_pid]=myzntune('PID',[0.4167,0.76,1.96,10],'openloop')
                                step(feedback(series(Gc_p,Gp),1),feedback(series(Gc_pi,Gp),1),feedback(series(Gc_pid,Gp),1))
                                title('Comparision of P,PI and PID Controllers (Tuned by Step Response Method)')
                                legend('Response of P Controller', 'Response of PI Controller', 'Response of PID Controller')
%% Figure Two %%
figure
% title('Comparision of PID and PID (With Filter )Controllers (Tuned by Step Response Method)')
[Gc_f,Kp_f,Ti_f,Td_f]=myzntune('PIDF',[0.4167,0.76,1.96,10],'openloop')
[Gcpid,Kppid,Tipid,Tdpid]=myzntune('PID',[0.4167,0.76,1.96,10],'openloop')
%                                 subplot(1,2,2)
                                step(feedback(series(Gcpid,Gp),1),feedback(series(Gc_f,Gp),1))
                                title('Comparision of PID and PID (With Filter )Controllers (Tuned by Step Response Method)')
                                legend('Response of PID Controller', 'Response of PID (With Filter)Controller')

%% Sustained Oscillation Method  %%
%% Figure Three %%
figure
[Gcp,Kpp,Tip,Tdp]=myzntune('P',[12.60,2.80,10],'closeloop')
[Gcpi,Kppi,Tipi,Tdpi]=myzntune('PI',[12.60,2.80,10],'closeloop')
[Gcpid1,Kppid1,Tipid1,Tdpid1]=myzntune('PID',[12.60,2.80,10],'closeloop')
                                step(feedback(series(Gcp,Gp),1),feedback(series(Gcpi,Gp),1),feedback(series(Gcpid1,Gp),1))
                                title('Comparision of P,PI and PID Controllers (Tuned by Sustained Oscillation Method)')
                                legend('Response of P Controller', 'Response of PI Controller', 'Response of PID Controller')
                                
%% Figure Four %%    
figure
[Gcf,Kpf,Tif,Tdf]=myzntune('PIDF',[12.60,2.80,10],'closeloop')
                                step(feedback(series(Gcpid1,Gp),1),feedback(series(Gcf,Gp),1))
                                title('Comparision of PID and PID (With Filter )Controllers (Tuned by Sustained Oscillation Method)')
                                legend('Response of PID Controller', 'Response of PID (With Filter)Controller')

%% Cohen Coon %%
%% Figure Five %%   
figure
[Gcp_cc,Kpp_cc,Tip_cc,Tdp_cc]=myCohenCoon('P',[0.4167,0.76,1.96,10]);
[Gcpi_cc,Kppi_cc,Tipi_cc,Tdpi_cc]=myCohenCoon('PI',[0.4167,0.76,1.96,10]);
[Gcpd_cc,Kppd_cc,Tipd_cc,Tdpd_cc]=myCohenCoon('PD',[0.4167,0.76,1.96,10]);
[Gcpid_cc,Kppid_cc,Tipid_cc,Tdpid_cc]=myCohenCoon('PID',[0.4167,0.76,1.96,10]);
[Gcpidf_cc,Kppidf_cc,Tipidf_cc,Tdpidf_cc]=myCohenCoon('PIDF',[0.4167,0.76,1.96,10]);

step(feedback(series(Gcp_cc,Gp),1),feedback(series(Gcpi_cc,Gp),1),feedback(series(Gcpd_cc,Gp),1),feedback(series(Gcpid_cc,Gp),1),feedback(series(Gcpidf_cc,Gp),1))
title('System Response with Cohen Coon Tuned PID Controllers')
legend('Response of P Controller', 'Response of PI Controller', 'Response of PD Controller','Response of PID Controller','Response of PID(With Filter) Controller')

%% The Chien, Hrones and Reswick Tuning Algorithm %%
%%[ Gc,Kp,Ti,Td ] = mychrtune( type,data,method,overshoot)
%% Figure Six %%
figure
[Gcp0,Kpp0,Tip0,Tdp0]=mychrtune('P',[0.4167,0.76,1.96,10],'set',0)
[Gcp20,Kpp20,Tip20,Tdp20]=mychrtune('P',[0.4167,0.76,1.96,10],'set',20)

[Gcpi0,Kppi0,Tipi0,Tdpi0]=mychrtune('PI',[0.4167,0.76,1.96,10],'set',0)
[Gcpi20,Kppi20,Tipi20,Tdpi20]=mychrtune('PI',[0.4167,0.76,1.96,10],'set',20)

[Gcpid0,Kppid0,Tipid0,Tdpid0]=mychrtune('PID',[0.4167,0.76,1.96,10],'set',0)
[Gcpid20,Kppid20,Tipid20,Tdpid20]=mychrtune('PID',[0.4167,0.76,1.96,10],'set',20)

[Gcpidf0,Kppidf0,Tipidf0,Tdpidf0]=mychrtune('PIDF',[0.4167,0.76,1.96,10],'set',0)
[Gcpidf20,Kppidf20,Tipidf20,Tdpidf20]=mychrtune('PIDF',[0.4167,0.76,1.96,10],'set',20)

subplot(1,2,1)
% title('Set Point Regulation with 0% Overshoot ')
step(feedback(series(Gcp0,Gp),1),feedback(series(Gcpi0,Gp),1),feedback(series(Gcpid0,Gp),1),feedback(series(Gcpidf0,Gp),1))
title('System Response with Setpoint Regulation with 0% Overshoot by CHR tune PID Controller')
legend('Response of P Controller', 'Response of PI Controller','Response of PID Controller','Response of PID(With Filter) Controller')

subplot(1,2,2)
% title('Set Point Regulation with 20% Overshoot ')
% figure
step(feedback(series(Gcp20,Gp),1),feedback(series(Gcpi20,Gp),1),feedback(series(Gcpid20,Gp),1),feedback(series(Gcpidf20,Gp),1))
title('System Response with Setpoint Regulation with 20% Overshoot by CHR tune PID Controller')
legend('Response of P 20%Controller', 'Response of PI Controller','Response of PID Controller','Response of PID(With Filter) Controller')
%% FIgure Seven %%%
figure
[Gcp_d0,Kpp_d0,Tip_d0,Tdp_d0]=mychrtune('P',[0.4167,0.76,1.96,10],'distrub',0)
[Gcp_d20,Kpp_d20,Tip_d20,Tdp_d20]=mychrtune('P',[0.4167,0.76,1.96,10],'distrub',20)
 
[Gcpi_d0,Kppi_d0,Tipi_d0,Tdpi_d0]=mychrtune('PI',[0.4167,0.76,1.96,10],'distrub',0)
[Gcpi_d20,Kppi_d20,Tipi_d20,Tdpi_d20]=mychrtune('PI',[0.4167,0.76,1.96,10],'distrub',20)
 
[Gcpid_d0,Kppid_d0,Tipid_d0,Tdpid_d0]=mychrtune('PID',[0.4167,0.76,1.96,10],'distrub',0)
[Gcpid_d20,Kppid_d20,Tipid_d20,Tdpid_d20]=mychrtune('PID',[0.4167,0.76,1.96,10],'distrub',20)
 
[Gcpidf_d0,Kppidf_d0,Tipidf_d0,Tdpidf_d0]= mychrtune('PIDF',[0.4167,0.76,1.96,10],'distrub',0)
[Gcpidf_d20,Kppidf_d20,Tipidf_d20,Tdpidf_d20]=mychrtune('PIDF',[0.4167,0.76,1.96,10],'distrub',20)


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Srinibas Bhuyan (2023). A MATLAB Approach to study different types of Ziegler-Nichols P-I-D Controller Tuning Algorithm


🌈4 Matlab代码及文章讲解


相关文章
|
3月前
|
机器学习/深度学习 传感器 算法
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
|
3月前
|
机器学习/深度学习 传感器 算法
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 传感器 算法
【大规模 MIMO 检测】基于ADMM的大型MU-MIMO无穷大范数检测研究(Matlab代码实现)
【大规模 MIMO 检测】基于ADMM的大型MU-MIMO无穷大范数检测研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 传感器 算法
用于图像恢复的即插即用 ADMM:定点收敛和应用(Matlab代码实现)
用于图像恢复的即插即用 ADMM:定点收敛和应用(Matlab代码实现)
|
3月前
|
机器学习/深度学习 传感器 算法
【TGV 正则器的快速计算方法】通过FFT的总(广义)变化进行图像去噪(Matlab代码实现)
【TGV 正则器的快速计算方法】通过FFT的总(广义)变化进行图像去噪(Matlab代码实现)
|
3月前
|
机器学习/深度学习 传感器 算法
基于遗传算法解决的多仓库多旅行推销员问题(Matlab代码实现)
基于遗传算法解决的多仓库多旅行推销员问题(Matlab代码实现)
|
3月前
|
传感器 机器学习/深度学习 算法
传感器信息系统中的节能收集研究(Matlab代码实现)
传感器信息系统中的节能收集研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 传感器 算法
基于ADMM的脑肿瘤病例优化放射治疗计划(RTP)研究(Matlab代码实现)
基于ADMM的脑肿瘤病例优化放射治疗计划(RTP)研究(Matlab代码实现)
|
3月前
|
传感器 机器学习/深度学习 算法
传感器信息系统中的节能收集研究(Matlab代码实现)
传感器信息系统中的节能收集研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 传感器 算法
【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)
【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)
相关产品
机器翻译
推荐文章
更多