【路径规划】基于A*算法和Dijkstra算法的路径规划(Python代码实现)

简介: 【路径规划】基于A*算法和Dijkstra算法的路径规划(Python代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥

🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳ 座右铭:行百里者,半于九十。

📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

Dijkstra算法是Edsger Wybe Dijkstra在1956年提出的一种用来寻找图形中结点之间最短路径的算法。Dijkstra算法的基本思想是贪心思想,主要特点是以起始点为中心向外层层扩展,直到扩展到目标点为止。


A*算法发表于1968年,A*算法是将Dijkstra算法与广度优先搜索算法(BFS)二者结合而成,通过借助启发式函数的作用,能够使该算法能够更快的找到最优路径。A算法是静态路网中求解最短路径最有效的直接搜索方法。


📚2 运行结果


21768e417af95900a2679ad379ff81e1.png


c17ff12bac039f5b9d5f51055e07562a.png


aca1deceddc39cd6a3d6259e4d56002e.png


A*:


4994fcf981d710623a902f5c92bd7158.png


D*:


3a4960781809214a43c8960bb9877340.png

# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_grid_position(current.x, self.min_x),
self.calc_grid_position(current.y, self.min_y), "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(
0) if event.key == 'escape' else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
# show graph
if show_animation: # pragma: no cover
plt.plot(self.calc_grid_position(current.x, self.min_x),
self.calc_grid_position(current.y, self.min_y), "xc")
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(
0) if event.key == 'escape' else None])
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)


部分代码:



🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]张希闻,肖本贤.改进D~*算法的移动机器人路径规划[J].传感器与微系统,2018,37(12):52-54+58.DOI:10.13873/J.1000-9787(2018)12-0052-03.

[2]张宇航,陈志军,吴超仲,钱闯,熊盛光. 基于改进A~*算法的电动汽车节能路径规划[C]//.第十七届中国智能交通年会科技论文集.,2022:64-65.DOI:10.26914/c.cnkihy.2022.053514.

[3]致谢:Atsushi Sakai(@Atsushi_twi)


🌈4 Python代码实现


相关文章
|
23天前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
29天前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
104 5
|
2月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
168 26
|
2月前
|
机器学习/深度学习 传感器 算法
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
176 8
|
2月前
|
算法 机器人 Serverless
【机器人路径规划】基于6种算法(黑翅鸢优化算法BKA、SSA、MSA、RTH、TROA、COA)求解机器人路径规划研究(Matlab代码实现)
【机器人路径规划】基于6种算法(黑翅鸢优化算法BKA、SSA、MSA、RTH、TROA、COA)求解机器人路径规划研究(Matlab代码实现)
353 2
|
2月前
|
机器学习/深度学习 人工智能 算法
【路径规划】基于凸优化算法实现威胁区域无人机路径规划研究(Matlab代码实现)
【路径规划】基于凸优化算法实现威胁区域无人机路径规划研究(Matlab代码实现)
119 0
|
算法 编译器 开发者
如何提高Python代码的性能:优化技巧与实践
本文探讨了如何提高Python代码的性能,重点介绍了一些优化技巧与实践方法。通过使用适当的数据结构、算法和编程范式,以及利用Python内置的性能优化工具,可以有效地提升Python程序的执行效率,从而提升整体应用性能。本文将针对不同场景和需求,分享一些实用的优化技巧,并通过示例代码和性能测试结果加以说明。
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
176 2
|
机器学习/深度学习 Python
时间序列特征提取:从理论到Python代码实践
时间序列是一种特殊的存在。这意味着你对表格数据或图像进行的许多转换/操作/处理技术对于时间序列来说可能根本不起作用。
404 1
时间序列特征提取:从理论到Python代码实践

热门文章

最新文章

推荐镜像

更多