使用asyncio库和多线程实现高并发的异步IO操作的爬虫

简介: 使用asyncio库和多线程实现高并发的异步IO操作的爬虫

摘要:本文介绍了如何使用Python的asyncio库和多线程实现高并发的异步IO操作,以提升爬虫的效率和性能。通过使用asyncio的协程和事件循环,结合多线程,我们可以同时处理多个IO任务,并实现对腾讯新闻网站的高并发访问。
01011-4020191695-_modelshoot style,a girl on the computer, (extremely detailed CG unity 8k wallpaper), full shot body photo of the most beautiful.png

正文:
在网络爬虫中,IO操作是主要的瓶颈之一。传统的爬虫程序通常使用多线程或多进程来实现并发,但是这种方式存在一些问题,比如线程切换的开销较大,进程间通信复杂等。而使用Python的asyncio库,我们可以通过协程和事件循环来实现高并发的异步IO操作,从而提升爬虫的效率和性能。
首先,我们需要了解一些基本概念。在asyncio中,协程是一种特殊的函数,可以在IO操作中暂停和恢复执行。事件循环是asyncio的核心组件,它负责调度和执行协程。通过将多个协程注册到事件循环中,我们可以同时处理多个IO任务,而不需要等待每个任务的完成。
下面是一个示例,演示了如何使用asyncio库和多线程实现一个高并发的爬虫程序,并以访问腾讯新闻为案例:
```import asyncio
import aiohttp
import concurrent.futures
import random

USER_AGENTS = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.81 Safari/537.3',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.81 Safari/537.3',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.3',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.3',

# 添加更多的User-Agent

]

async def fetch(session, url, proxy, cookie):
headers = {'User-Agent': random.choice(USER_AGENTS), 'Cookie': cookie}
connector = aiohttp.ProxyConnector.from_url(proxy)
async with session.get(url, headers=headers, connector=connector) as response:
return await response.text()

async def main():
urls = [
'https://news.qq.com/',
'https://news.qq.com/world/',
'https://news.qq.com/society/'
]
proxy = 'http://username:password@t.16yun.cn:30001'
cookie = 'your_cookie_value'
async with aiohttp.ClientSession() as session:
with concurrent.futures.ThreadPoolExecutor() as executor:
loop = asyncio.get_event_loop()
tasks = [loop.run_in_executor(executor, fetch, session, url, proxy, cookie) for url in urls]
results = await asyncio.gather(*tasks)
for result in results:
print(result)

if name == 'main':
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
```
在上面的示例中,我们首先定义了一个fetch函数,用于发送HTTP请求并返回响应的内容。然后,在main函数中,我们创建了一个异步的HTTP会话(ClientSession),并将多个fetch任务添加到任务列表中。通过使用concurrent.futures.ThreadPoolExecutor()来创建一个线程池,我们可以在多线程中执行fetch任务。最后,我们使用asyncio.gather函数来等待所有任务的完成,并打印每个任务的结果。
通过使用asyncio库和多线程,我们可以轻松地实现高并发的爬虫程序,并实现对腾讯新闻网站的高并发访问。由于异步IO操作的特性,我们可以同时处理多个IO任务,而不需要等待每个任务的完成。
然而,在使用asyncio进行爬虫开发时,我们需要注意以下几点:
使用异步的HTTP库:在上面的示例中,我们使用了aiohttp库来发送HTTP请求。这是一个基于asyncio的异步HTTP库,可以与asyncio无缝集成。
控制并发度:虽然asyncio可以实现高并发的异步IO操作,但是过高的并发度可能会导致服务器拒绝服务(DDoS)攻击。因此,我们需要控制并发度,避免给服务器带来过大的负载。
异常处理:在异步IO操作中,可能会出现各种异常,比如网络连接错误、超时等。我们需要适当地处理这些异常,以保证程序的稳定性和可靠性。
总结:
使用asyncio库和多线程可以轻松地实现高并发的异步IO操作,从而提升爬虫的效率和性能。通过使用协程和事件循环,结合多线程,我们可以同时处理多个IO任务,并实现对腾讯新闻网站的高并发访问。希望本文对你理解和应用asyncio库和多线程来实现高并发的爬虫有所帮助。

相关文章
|
2月前
|
数据采集 Java API
Jsoup库能处理多线程下载吗?
Jsoup库能处理多线程下载吗?
|
4月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。
60 2
|
5月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
68 4
|
2月前
|
数据采集 机器学习/深度学习 前端开发
PHP爬虫性能优化:从多线程到连接池的实现
本文介绍了一种通过多线程技术和连接池优化PHP爬虫性能的方法,以新浪投诉平台为例,详细展示了如何提高数据采集效率和稳定性,解决了传统单线程爬虫效率低下的问题。
105 2
PHP爬虫性能优化:从多线程到连接池的实现
|
5月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
4月前
|
Java Linux
【网络】高并发场景处理:线程池和IO多路复用
【网络】高并发场景处理:线程池和IO多路复用
108 2
|
5月前
|
网络协议 Java Linux
高并发编程必备知识IO多路复用技术select,poll讲解
高并发编程必备知识IO多路复用技术select,poll讲解
|
5月前
|
数据采集
爬虫之多线程,提高效率
爬虫之多线程,提高效率
|
5月前
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
在数据驱动时代,高效处理大规模数据和高并发请求至关重要。Python凭借其优雅的语法和强大的库支持,成为开发者首选。本文将介绍Python中的并发与异步编程,涵盖并发与异步的基本概念、IO密集型任务的并发策略、CPU密集型任务的并发策略以及异步IO的应用。通过具体示例,展示如何使用`concurrent.futures`、`asyncio`和`multiprocessing`等库提升程序性能,帮助开发者构建高效、可扩展的应用程序。
243 0
WXM
|
6月前
|
存储 缓存 算法
IO/线程的零拷贝
服务器在提供文件传输功能时,传统实现方式是通过读取磁盘文件内容,将其加载到用户空间的缓冲区,再通过网络 API 发送至客户端,这个过程涉及多次上下文切换和内存拷贝,导致性能下降。
WXM
79 12

热门文章

最新文章