转:Python的分水岭算法如何分割图像?

简介: 分水岭算法是一种图像分割算法。它将图像分割为两个或多个连通区域。算法使用图像的梯度信息来确定图像中的“分水岭”。分水岭是指图像中的边界或轮廓。算法通过找到图像中的分水岭来将图像分割成不同的区域。

分水岭算法是一种图像分割算法。它将图像分割为两个或多个连通区域。算法使用图像的梯度信息来确定图像中的“分水岭”。分水岭是指图像中的边界或轮廓。算法通过找到图像中的分水岭来将图像分割成不同的区域。
image.png

以下是分水岭算法Python 示例:

  import cv2

  import numpy as np

  # Load the image

  image = cv2.imread("image.jpg")

  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

  # Apply the thresholding to create a binary image

  ret, thresh = cv2.threshold(gray, 0, 255,   cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

  # Perform a distance transform

  distance = cv2.distanceTransform(thresh, cv2.DIST_L2, 5)

  ret, sure_fg = cv2.threshold(distance, 0.7*distance.max(), 255, 0)

  # Perform the watershed algorithm

  sure_fg = np.uint8(sure_fg)

  unknown = cv2.subtract(thresh, sure_fg)

  ret, markers = cv2.connectedComponents(sure_fg)

  # Add one to all labels so that sure background is not 0, but 1

  markers = markers+1

  # Now, mark the region of unknown with zero

  markers[unknown==255] = 0

  markers = cv2.watershed(image, markers)

  # Create the output image

  image[markers == -1] = [255,0,0]

  # Display the output image

  cv2.imshow("Segmented Image", image)

  cv2.waitKey(0)

  cv2.destroyAllWindows()

该代码首先加载图像,将其转换为灰度,应用阈值创建二值图像,执行距离变换,然后使用connectedComponents函数生成的标记应用分水岭算法。最后,它用蓝色的-1标记标记图像中的片段。

本文转载自:https://www.teamdoc.cn/archives/2957

目录
相关文章
|
4月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
423 0
|
4月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
172 5
|
5月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
257 26
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
247 8
|
5月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
177 1
|
5月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
499 4
|
5月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
701 4
|
5月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
312 3
|
5月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
297 0

推荐镜像

更多