数据预处理之图像去空白

简介: 数据预处理之图像去空白

图像去空白


介绍


图像去空白是指在图像处理中去除图像中的空白区域的过程。空白区域通常是指图像中的白色或其他颜色,其不包含有用的信息。去空白的目的是为了节省存储空间、提高图像处理速度、改善图像质量等。


去空白的方法有很多,其中一些常见的方法包括边缘检测、阈值处理、图像剪切和形态学处理。每种方法都有其特定的优势和局限性,因此通常需要结合使用多种方法,以便获得最佳效果。


举个例子,假设有一张图片,其中有一个大的白色区域,我们可以使用阈值处理的方法将其转换为黑白图像,然后使用形态学处理的方法去除其中的白色像素,最终得到一张只包含有用信息的图像。


方法


下面是几种常见的图像去空白方法:


1.边缘检测:通过检测图像中的边缘来去除空白区域。例如,使用 Canny 边缘检测算法或膨胀腐蚀算法。


2.阈值处理:通过设置图像中像素值的阈值来去除空白区域。例如,使用二值化算法。


3.图像剪切:通过计算图像中非空白像素的边界,并仅保留其中的图像。


4.形态学处理:通过使用形态学操作,例如腐蚀和膨胀,来去除空白区域。


这些方法的选择取决于图像的质量、内容和需求。通常,多种方法需要结合使用,以便获得最佳效果。


边缘检测


边缘检测是一种常见的图像去空白方法。该方法通过检测图像中的边缘,从而确定图像的有效区域。


步骤如下:


1.对图像进行预处理,将其转换为灰度图像。


2.使用滤波器对图像进行模糊处理,以减少图像中的噪声。


3.使用边缘检测算法,如Canny算法、Sobel算法等,在图像上检测边缘。


4.对检测到的边缘进行处理,以确定有效区域。


5.将有效区域从图像中剪切出来,得到一张去空白后的图像。


注意:边缘检测方法不一定适用于所有图像,因此需要对不同的图像进行试验,以确定最佳的边缘检测算法和参数。

import cv2
import numpy as np
# 读取图像
img = cv2.imread("input.jpg")
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用Canny边缘检测算法
edges = cv2.Canny(gray, 50, 150)
# 寻找轮廓
contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 确定有效区域
x, y, w, h = cv2.boundingRect(contours[0])
# 将有效区域从图像中剪切出来
cropped = img[y:y + h, x:x + w]
# 保存去空白后的图像
cv2.imwrite("output.jpg", cropped)

阈值处理

import cv2
import numpy as np
# 读取图像
img = cv2.imread("input.jpg")
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 阈值处理
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# 寻找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 确定有效区域
x, y, w, h = cv2.boundingRect(contours[0])
# 将有效区域从图像中剪切出来
cropped = img[y:y + h, x:x + w]
# 保存去空白后的图像
cv2.imwrite("output.jpg", cropped)

形态学图像剪切


目前来说最有用

import numpy as np
import cv2
img = cv2.imread('data/3.jpg')
img = img[:-5,:-5] 
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255*(gray < 128).astype(np.uint8)
gray = cv2.morphologyEx(gray, cv2.MORPH_OPEN, np.ones((2, 2), dtype=np.uint8))
coords = cv2.findNonZero(gray)
x, y, w, h = cv2.boundingRect(coords)
rect = img[y:y+h, x:x+w] 
cv2.imwrite("Output.jpg", rect)
目录
相关文章
|
机器学习/深度学习 传感器 算法
【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)
【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)
|
JSON 数据格式 Python
对Labelme标注图像,进行90、180、270的旋转,实现标注数据的扩充。
对Labelme标注图像,进行90、180、270的旋转,实现标注数据的扩充。
1070 0
对Labelme标注图像,进行90、180、270的旋转,实现标注数据的扩充。
|
1月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
179 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
1月前
|
数据采集
遥感语义分割数据集中的切图策略
该脚本用于遥感图像的切图处理,支持大尺寸图像按指定大小和步长切割为多个小图,适用于语义分割任务的数据预处理。通过设置剪裁尺寸(cs)和步长(ss),可灵活调整输出图像的数量和大小。此外,脚本还支持标签图像的转换,便于后续模型训练使用。
15 0
|
2月前
MUMU:用文本、图像引导,多模态图像生成模型
【9月更文挑战第19天】随着人工智能技术的发展,多模态模型因其能处理文本、图像、音频等多种信息而备受关注。在图像生成领域,一种名为MUMU的新模型展现出巨大潜力。MUMU可接收文本和图像提示并生成相应图像,如根据“一个&lt;图片:男人&gt;男人和他的&lt;图片:狗&gt;狗在一个&lt;图片:卡通&gt;动画风格中”生成图像。通过训练包含文本-图像数据集的视觉-语言编码器及扩散解码器,MUMU能实现风格转换和角色一致性等任务,并在图像编辑和合成方面展示出潜力。然而,其仍受限于复杂场景处理能力和计算资源需求。论文详情见链接:https://arxiv.org/abs/2406.18790。
37 1
|
3月前
|
传感器 定位技术 C++
基于C++的GDAL用空白栅格填充长时间序列遥感影像中的缺失图像
然后,定义需要处理的遥感影像路径列表,和识别数据缺失的逻辑。这里我们简化处理,假设已经知道哪一幅图像是缺失的,因此直接跳过识别步骤。
56 1
|
3月前
分割数据集,并对数据集进行预处理
【8月更文挑战第8天】分割数据集,并对数据集进行预处理。
36 1
|
5月前
|
算法 计算机视觉 Python
使用分水岭算法分割图像
【6月更文挑战第4天】使用分水岭算法分割图像。
430 4
|
存储 传感器 数据可视化
3D目标检测数据集 KITTI(标签格式解析、3D框可视化、点云转图像、BEV鸟瞰图)
本文介绍在3D目标检测中,理解和使用KITTI 数据集,包括KITTI 的基本情况、下载数据集、标签格式解析、3D框可视化、点云转图像、画BEV鸟瞰图等,并配有实现代码。
1533 1
|
6月前
|
人工智能 文字识别 算法
垂直领域大模型——文档图像大模型的思考与探索
12月1日,2023中国图象图形学学会青年科学家会议在广州召开。超1400名研究人员齐聚一堂,进行学术交流与研讨,共同探索促进图象图形领域“产学研”交流合作。