flask多线程,线程池,序列化和反序列化

简介: flask多线程,线程池,序列化和反序列化

多线程与多进程


默认的情况下,flask自带的web服务器是以单进程单线程来响应我们的客户端请求。大家很容易想到,10个请求进来是没有办法同时执行的,已给请求执行完之后才能执行另一个请求。


flask自带多线程和多进程,但是有个缺点是无法实现异步。

ps:
1.多进程或多线程只能选择一个,不能同时开启
2.windows环境不支持多进程,只能在linux上使用。
若在windows环境开启多进程,即设置processes 大于1,即报错。
# 1.threaded : 多线程支持,默认为False,即不开启多线程;
app.run(threaded=True)
# 2.processes:进程数量,默认为1.
app.run(processes=True)

线程池


概念:


线程池就是首先创建一些线程,它们的集合称为线程池。使用线程池可以很好地提高性能。


线程池在系统启动时即创建大量空闲的线程,程序将一个任务传给线程池,线程池就会启动一条线程来执行这个任务,执行结束以后,该线程并不会死亡,而是再次返回线程池中成为空闲状态,等待执行下一个任务。


python中的线程池:


从 Python3.2 开始,标准库为我们提供了 concurrent.futures 模块,它提供了 ThreadPoolExecutor 和 ProcessPoolExecutor两个类,实现了对 threading 和 multiprocessing 的进一步抽象,不仅可以自动调度线程,还可以做到:


1.主线程可以获取某一个线程(或者任务的)的状态,以及返回值。


2.当一个线程完成的时候,主线程能够立即知道。


3.让多线程和多进程的编码接口一致。


下面展示线程池的 例子

1.task=executor.submit() #提交任务到线程池中
2.task.done() #判断任务是否完成
3.task.cancel() #取消任务,已在线程池运行的无法取消
4.task.result() #获得执行结果
from concurrent.futures import ThreadPoolExecutor
executor = ThreadPoolExecutor(4)
task=executor.submit(get_return,re_url,result)#子线程
return json.dumps()#主线程
def get_return(re_url,result):
  requests.post(re_url, json=result)

JSON序列化和反序列化


序列化: json的dumps方法可以把dict类型转化成str的类型。


反序列化:json的loads方法可以把str类型转化成dic的类型。


下面展示 例子

在调用接口传输json时,如果不进行序列化和反序列化,接收方可能会无法准确收到数据。
result = {"res":res,"res2":res2}
json_data = json.dumps(result)
new_data = json.loads(json_data)
requests.post(url=re_url, json=new_data)
目录
相关文章
|
30天前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
4天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
32 20
|
9天前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。
|
3月前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
265 64
|
2月前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
79 1
|
3月前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
136 38
|
3月前
|
Java
.如何根据 CPU 核心数设计线程池线程数量
IO 密集型:核心数*2 计算密集型: 核心数+1 为什么加 1?即使当计算密集型的线程偶尔由于缺失故障或者其他原因而暂停时,这个额外的线程也能确保 CPU 的时钟周期不会被浪费。
156 4
|
3月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
3月前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第22天】在Java的世界里,对象序列化和反序列化是数据持久化和网络传输的关键技术。本文将带你了解如何在Java中实现对象的序列化与反序列化,并探讨其背后的原理。通过实际代码示例,我们将一步步展示如何将复杂数据结构转换为字节流,以及如何将这些字节流还原为Java对象。文章还将讨论在使用序列化时应注意的安全性问题,以确保你的应用程序既高效又安全。
|
3月前
|
Java
线程池内部机制:线程的保活与回收策略
【10月更文挑战第24天】 线程池是现代并发编程中管理线程资源的一种高效机制。它不仅能够复用线程,减少创建和销毁线程的开销,还能有效控制并发线程的数量,提高系统资源的利用率。本文将深入探讨线程池中线程的保活和回收机制,帮助你更好地理解和使用线程池。
164 2