优惠券算法解析

简介: 基于单张优惠券与叠加优惠券的算法解析及场景举例。

①单张优惠券算法

单张优惠券的优惠金额计算流程如下:

  • 1)判断优惠券限定范围,找出范围内的课程
  • 2)计算课程总价
  • 3)判断券是否可用
  • 4)计算优惠金额

假设有商品信息如下:

序号 价格 分类
1 100 a
2 100 b
3 100 b

有优惠券信息如下:

序号 分类
1 200 100 b

我们按照上述算法来判断:

  • 1)判断限定范围:这张券限定分类 b,对应的商品序号是2、3
  • 2)计算课程总价:商品序号2、3的总价为200
  • 3)判断是否可用:总价刚好达到优惠券满减门槛200,可以使用
  • 4)计算优惠:满200减100,因此最终优惠金额就是100元
  • 5)计算优惠明细:因为-100在商品序号2/3上,各占50%,因此优惠金额均摊,各为50,如下
序号 价格 分类 优惠金额
1 100 a 0
2 100 b 50
3 100 b 50

这里如果序号2/3的价格不是2的倍数,应该怎么整呢?一般的实现方案是:为了避免出现精度损失导致的金额不一致,最后一个商品的优惠明细等于优惠总金额减去其它商品的优惠明细之和


②叠加优惠券算法

券叠加就是按照券组合的顺序,依次计算每张券的优惠金额,最终优惠金额就是所有权的优惠累加。

需要注意的是:由于一张券计算完优惠后,商品的金额会发生变化,因此下一张券的计算金额会随之改变,因此券叠加的顺序非常重要

而且为了方便计算后续券的优惠金额,我们必须知道商品金额具体的变化,也就是弄清楚每一张优惠券使用后,每个商品的具体优惠金额,我们称之为优惠明细,我们可以用一个表格来记录

序号 优惠明细
1 *
2 *
3 *

因此,券叠加算法比单券算法需要多一步:

  • 1)判断优惠券限定范围,找出范围内的课程
  • 2)计算课程总价
  • 3)判断券是否可用
  • 4)计算优惠金额
  • 5)计算优惠明细

假设有商品信息如下:

序号 价格 分类
1 100 a
2 100 b
3 100 b

有优惠券信息如下:

序号 分类
1 100(每) 20 a,b
2 200 100 b
3 80 20 a

我们按照上述算法来一条条判断:

  • 1)判断限定范围:券1可用于所有分类,因此商品序号1、2、3都可以用
  • 2)计算课程总价:所有商品累加共300元
  • 3)判断是否可用:券1门槛是100,符合要求
  • 4)计算优惠:每满100减20,因此总共折扣就是60元
  • 5)计算优惠明细

正常情况下,按照商品价格在商品总价中的比例,乘以优惠总金额

最后一个商品,为了避免出现精度损失导致的金额不一致,最后一个商品的优惠明细等于优惠总金额减去其它商品的优惠明细之和

例如,商品1、2的折扣:(100 / 300) 60 = 20 ,商品3的折扣等于:*60 - 20 - 20 = 20,因此

券1信息如下:

image-20230428113616454.png


券2的计算步骤如下:

  • 1)判断范围:券2可用于分类b,因此商品序号2、3都可以用
  • 2)计算总价:商品2已经优惠了20,现在价格是80,商品3已经优惠了20,现在价格是80。因此商品总价是160
  • 3)判断是否可用:券2门槛是200,不符合要求,跳过

券2信息如下:

image-20230428113805520.png


券3的计算步骤如下:

  • 1)判断范围:券3可用于分类a,因此商品序号1可以用
  • 2)计算总价:商品1原价100元,已经优惠20,现价80元
  • 3)判断是否可用:券3门槛是80,符合要求
  • 4)计算优惠金额:满80减20,因此总共折扣就是20元
  • 5)计算优惠明细:由于只有商品1可用,商品1优惠明细就是20元

券3信息如下:

image-20230428113940068.png

目录
相关文章
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
1313 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
5月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
661 1
|
5月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
392 1
贪心算法:部分背包问题深度解析
|
5月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
5月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
机器学习/深度学习 算法 自动驾驶
1004 0
|
5月前
|
机器学习/深度学习 人工智能 资源调度
大语言模型的核心算法——简要解析
大语言模型的核心算法基于Transformer架构,以自注意力机制为核心,通过Q、K、V矩阵动态捕捉序列内部关系。多头注意力增强模型表达能力,位置编码(如RoPE)解决顺序信息问题。Flash Attention优化计算效率,GQA平衡性能与资源消耗。训练上,DPO替代RLHF提升效率,MoE架构实现参数扩展,Constitutional AI实现自监督对齐。整体技术推动模型在长序列、低资源下的性能突破。
624 8
|
5月前
|
算法 API 数据安全/隐私保护
深度解析京东图片搜索API:从图像识别到商品匹配的算法实践
京东图片搜索API基于图像识别技术,支持通过上传图片或图片URL搜索相似商品,提供智能匹配、结果筛选、分页查询等功能。适用于比价、竞品分析、推荐系统等场景。支持Python等开发语言,提供详细请求示例与文档。
|
7月前
|
机器学习/深度学习 人工智能 编解码
AI视觉新突破:多角度理解3D世界的算法原理全解析
多视角条件扩散算法通过多张图片输入生成高质量3D模型,克服了单图建模背面细节缺失的问题。该技术模拟人类多角度观察方式,结合跨视图注意力机制与一致性损失优化,大幅提升几何精度与纹理保真度,成为AI 3D生成的重要突破。
787 0

推荐镜像

更多
  • DNS