数值分析算法 MATLAB 实践 线性方程组 Gauss消去法

简介: 数值分析算法 MATLAB 实践 线性方程组 Gauss消去法

数值分析算法 MATLAB 实践 线性方程组 Gauss消去法

Gauss消去法

function solution =Gauss(A,b)
%高斯消去法function solution =Gauss(A,b)
% A为方程组的系数矩阵 b为方程组的右端项;
    n = length(b);
    for k=1:n-1
        for i=k+1:n
            mik=A(i,k)/A(k,k);%消元因子
            for j=k+1:n
                A(i,j)=A(i,j)-mik*A(k,j);
            end
         b(i)=b(i)-mik*b(k);
        end
    end
    solution(n)=b(n)/A(n,n);
    for i=n-1:-1:1 
        for j=i+1:n
            solution(i)=solution(i)+A(i,j)*solution(j);
        end
        solution(i)=(b(i)-solution(i))/A(i,i);
    end
end
function solution=GaussFunmethod(gauss, Presion) 
% gauss为用户输入的增广矩阵
 % Precision为用户所输入的精度要求
    if nargin==2
      try
         digits(Precision);
      cath
         disp('你输入的精度有误');
         digits(10);
      end
    else
      digits(10);
    end     

    Ab=vpa(gauss)%显示输入的增广矩阵
    row=size(Ab,1);
    col=size(Ab,2);
    if ndims(Ab)~=2|(col-row)~=1
        disp('矩阵的大小有误');
        return
    end
    if det(gauss(:,1:row))==0
        disp('该方程的系数矩阵行列式为零');
        return
    end
   % 消元法
        for i=1:row
          j=i;
          while Ab(j,i)==0
                  j=j+1;
          end
          temp=Ab(i,:);
          Ab(i,:)=Ab(j,:);
          Ab(j,:)=temp;
          for k=i+1:row
              Ab(k,:)=vpa(Ab(k,:)-Ab(i,:)*Ab(k,i)/Ab(i,i));
          end
        end               
      %% 回代过程
        for i=row:-1:1
           temp=Ab(i,col);
           for k=i+1:row
                temp=vpa(temp-solution(k)*Ab(i,k));
           end
           solution(i)=vpa(temp/Ab(i,i));
        end
end

Gauss主元素消去法

function X=Gauss_Mainmethod(A,b)
%列主元方法 计算线性方程组
%A为方程组的系数矩阵 b为方程组的右端项;
    zengguang=[A b];
    Ab = [A,b]
    n=length(b);
    ra=rank(A);
    rz=rank(zengguang);
    temp1=rz-ra;
    if temp1>0
        disp('方程组无一般意义下的解,系数矩阵与增广矩阵秩不同.')
        return
    end
    if (ra==rz)
        if (ra==n)
            X=zeros(n,1); C=zeros(1,n+1);
        for p= 1:n-1
            [Y,j]=max(abs(zengguang(p:n,p))); C=zengguang(p,:);
            zengguang(p,:)= zengguang(j+p-1,:); zengguang(j+p-1,:)=C;
            for k=p+1:n
                m= zengguang(k,p)/ zengguang(p,p);
                zengguang(k,p:n+1)= zengguang(k,p:n+1)-m* zengguang(p,p:n+1);
            end
        end
        b=zengguang(1:n,n+1);A=zengguang(1:n,1:n); X(n)=b(n)/A(n,n);
        for q=n-1:-1:1
                X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);
        end
    else
            disp('方程组为欠定方程组')
        end
    X = X';
end
function x=principal_element(A,b)
%列主元方法 计算线性方程组
%A为方程组的系数矩阵 b为方程组的右端项;
[rows,~]=size(A);
aug_mat=[A,b];Ab= [A,b]
for i=1:rows
    temp_list=aug_mat(:,i);
    temp_list(1:max(1,i-1))=0;
    [~,exchange_pos]=max(abs(temp_list));
    aug_mat([i,exchange_pos],:)=aug_mat([exchange_pos,i],:);
    coefficient=aug_mat(:,i);
    coefficient=-coefficient./coefficient(i);
    coefficient(i)=0;
    aug_mat=coefficient*aug_mat(i,:)+aug_mat;
end
divisor=aug_mat((1:rows)+(0:rows:(rows*(rows-1))))';
aug_mat=aug_mat./divisor;
x=aug_mat(:,rows+1:end);
x =x';
end

Gauss-Jordan消去法

function x = GaussJordan(A, b)
%function x = GaussJordan(A, b)
%GaussJordan消去法
%A为方程组的系数矩阵 b为方程组的右端项;
n = length(b);
if size(A, 1) ~= n || size(A, 2) ~= n
    error('Matrix-vector size mismatch.');
end
Ab = [A, b]
% Perform Gauss-Jordan elimination
% augmented matrix
A = [A, b];
for k = 1 : n
    A(k, :) = A(k, :) / A(k, k);
    for i = k + 1 : n
        m = A(i, k) / A(k, k);
        A(i, :) = A(i, :) - m * A(k, :);
    end
end
for k = n : -1 : 1
    for i = k - 1 : -1 : 1
        m = A(i, k) / A(k, k);
        A(i, :) = A(i, :) - m * A(k, :);
    end
end
    x = A(:, n + 1);
    x =x';
end
目录
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
105 80
|
7天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
15天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
15天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
21天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
24天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。

热门文章

最新文章