数值分析算法 MATLAB 实践 线性方程组迭代法

简介: 数值分析算法 MATLAB 实践 线性方程组迭代法

数值分析算法 MATLAB 实践 线性方程组迭代法

Gauss-Seidel迭代法

%% 求线性方程组的Gauss-Seidel迭代法,调用格式为
%  [x, k] = guaseidel(A,b,x0,eps,it_max)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,eps 为精度要求,默认为1e-5,
%  it_max 为最大迭代次数,默认为100
%  x 为线性方程组的解,k迭代次数
x0=[0,0,0]';%[x1;x2;x3]列向量
it_max = 1000;eps=1e-6;
[x3,k3_cnt] = GuaSeidelFunc(A,b,x0,eps,it_max);
disp('迭代次数:k3_cnt=');
disp(k3_cnt)
disp(['方程组的解:x3 = ']);
disp(x3)


%% 求线性方程组的Gauss-Seidel迭代法,调用格式为
%  [x,k]=GuaSeideFunmethod(A,b,x0,ep,N)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,ep为精度要求,默认为1e-6,
%  N 为最大迭代次数,默认为500
%  x 为线性方程组的解,k迭代次数
x0=[0,0,0]';%[x1;x2;x3]列向量
it_max = 1000;eps=1e-6;
[x4,k4_cnt]=GuaSeideFunmethod(A,b,x0,eps,it_max);
disp('迭代次数:k4_cnt=');
disp(k4_cnt)
disp(['方程组的解:x4 = ']);
disp(x4)

%% 求线性方程组的GuessSeidel迭代法,调用格式为
%  function [x,k] = GuessSeidel(A,b,eps,it_max)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,eps为精度要求,默认为1e-6,
%  it_max 为最大迭代次数,默认为500
%  x 为线性方程组的解,k迭代次数
it_max = 1000;eps=1e-6;
[x5,k5_cnt] = GuessSeidel(A,b,eps,it_max);
disp('迭代次数:k5_cnt=');
disp(k5_cnt)
disp(['方程组的解:x5 = ']);
disp(x5)
function [x,k] = GuessSeidel(A,b,eps,it_max)
%%GuessSeidel:高斯-赛德尔方法求解线性方程组
%高斯-赛德尔方法是一种迭代法,首先猜测各个xi的初始值(一个简单的方法是设各个xi为0)
%将这些初始值带入到第一个方程解出x1,然后更新x1,将xi带入第二个方程x2,更新x2
%依次迭代,直至数值解非常接近真实值为止
%判断条件:对任意的i,有ea(i)=abs((x(i)-xold(i))/x(i))<=es
%即:max(ea)<=es
%%输入
%A=系数矩阵
%b=右侧矩阵
%es=终止准则(default = 0.00001%)
%maxit=最大迭代次数(default = 500)
%输出:
%x=解向量
%%代码实现
%思路:解向量可以简单的表示为x=d-C*x
%其中di=b_i/a_ii,C的对角线元素为0。
    if nargin<2
        error('至少输入系数矩阵和右侧矩阵')
    end
    if nargin<4||isempty(it_max)
        it_max=500;
    end
    if nargin<3||isempty(eps)
        eps=1e-6;
    end
    [m,n]=size(A);
    if m~=n
         error('系数矩阵必须为方阵')
    end
%求解C
    k = 0;
    C = A;
    for i = 1:n
        C(i,i)=0;
        x(i) = 0;%顺便求初始x
    end
    x=x';
    for i = 1:n
        C(i,1:n) = C(i,1:n)/A(i,i);
    end
    %求解d
    for i=1:n
        d(i)=b(i)/A(i,i);
    end
    %开始迭代
        iter=0;
    while(1)
        xprev=x;%记录上次的x
        for i=1:n
            x(i)=d(i) - C(i,:)*x;%求解并更新xi
            if x(i)~=0
                ea(i)=abs((x(i)-xprev(i))/x(i));
            end
        end
        iter = iter+1;
        if max(ea)<=eps || iter>=it_max
            break
        end
        k=k+1;
    end
end
function [x,k] = GuessSeidel(A,b,eps,it_max)
%%GuessSeidel:高斯-赛德尔方法求解线性方程组
%高斯-赛德尔方法是一种迭代法,首先猜测各个xi的初始值(一个简单的方法是设各个xi为0)
%将这些初始值带入到第一个方程解出x1,然后更新x1,将xi带入第二个方程x2,更新x2
%依次迭代,直至数值解非常接近真实值为止
%判断条件:对任意的i,有ea(i)=abs((x(i)-xold(i))/x(i))<=es
%即:max(ea)<=es
%%输入
%A=系数矩阵
%b=右侧矩阵
%es=终止准则(default = 0.00001%)
%maxit=最大迭代次数(default = 500)
%输出:
%x=解向量
%%代码实现
%思路:解向量可以简单的表示为x=d-C*x
%其中di=b_i/a_ii,C的对角线元素为0。
    if nargin<2
        error('至少输入系数矩阵和右侧矩阵')
    end
    if nargin<4||isempty(it_max)
        it_max=500;
    end
    if nargin<3||isempty(eps)
        eps=1e-6;
    end
    [m,n]=size(A);
    if m~=n
         error('系数矩阵必须为方阵')
    end
%求解C
    k = 0;
    C = A;
    for i = 1:n
        C(i,i)=0;
        x(i) = 0;%顺便求初始x
    end
    x=x';
    for i = 1:n
        C(i,1:n) = C(i,1:n)/A(i,i);
    end
    %求解d
    for i=1:n
        d(i)=b(i)/A(i,i);
    end
    %开始迭代
        iter=0;
    while(1)
        xprev=x;%记录上次的x
        for i=1:n
            x(i)=d(i) - C(i,:)*x;%求解并更新xi
            if x(i)~=0
                ea(i)=abs((x(i)-xprev(i))/x(i));
            end
        end
        iter = iter+1;
        if max(ea)<=eps || iter>=it_max
            break
        end
        k=k+1;
    end
end
function [x,k]=GuaSeideFunmethod(A,b,x0,ep,N)
% 求线性方程组的Gauss-Seidel迭代法,调用格式为
%  [x,k]=GuaSeideFunmethod(A,b,x0,ep,N)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,ep为精度要求,默认为1e-6,
%  N 为最大迭代次数,默认为500
%  x 为线性方程组的解,k迭代次数
    n=length(b); 
    if nargin<5 
        N=500; 
    end  
    if nargin<4 
       ep=1e-6;  
    end
    if nargin<3
        x0=zeros(n,1);
        k=0; 
    end
    x=zeros(n,1);
    k=0;
    while k<N
        for i=1:n
            if i==1 
          x(1)=(b(1)-A(1,2:n)*x0(2:n))/A(1,1);        %开始迭代变量
            elseif i==n  
           x(n)=(b(n)-A(n,1:n-1)*x(1:n-1))/A(n,n);  %最后迭代变量
            else                                         %其它迭代变量                    
 x(i)=(b(i)-A(i,1:i-1)*x(1:i-1)-A(i,i+1:n)*x0(i+1:n))/A(i,i);
            end
        end
        if  norm(x-x0,inf)<ep
            break;
        end
         x0=x;   
        %disp('x=');
        %disp(x); % 此两行代码可输出中间结果
    k=k+1;
    end
    if k==N
        warning('已到达迭代次数上限!');
    end
 end
目录
相关文章
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
2天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
20小时前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
20小时前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
24 13
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章