数值分析算法 MATLAB 实践 常微分方程求解

简介: 数值分析算法 MATLAB 实践 常微分方程求解

数值分析算法 MATLAB 实践 常微分方程求解

Euler 法及改进算法

function [x,y] = euler(fun,a,b,h,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% f是带求函数的一阶导形式
% a,b分别是自变量取值上下限
% y0 是初始条件y(0)
% h是步长
    s = (b - a) / h; % 求步数
    X = zeros(1, s+1);
    Y = zeros(1, s+1);
    X = a:h:b;
    Y(1) = y0;
    for k = 1:s
        Y(k+1) = Y(k) + h * fun(X(k), Y(k))
    end
    x = X';
    y = Y';
end
AI 代码解读
%% euler求解微分方程
% dfun1 = y^2-y^3;
 [x, y] = euler(@dfun1, 0,5,0.01,0.1);
% dfun1 = y;
% [x, y] = euler(@dfun1, 0,1,0.1,1);
figure
plot(x, y);
title('显示欧拉格式');

%% 微分方程
function dfun1 = dfun1(t,y)
    dfun1 = y^2-y^3;
    %dfun1 = y;
end
AI 代码解读
function[x,y]=imp_euler(func,a_start,b_end,h_step,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    % 显式 Euler 作为初始值迭代计算
    yi_0 =  y(i-1) + h_step * func(x(i-1), y(i-1));
    yi_1 = y(i - 1) + h_step * func(x(i), yi_0);
    while abs(yi_1 - yi_0) > 1e-6
        yi_0 = yi_1;
        yi_1 = y(i - 1) + h_step * func(x(i), yi_0);
    end
    y(i) = yi_1;
end
AI 代码解读
function[x,y]=improve_euler(func,a_start,b_end,h_step,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    yp = y(i-1) + h_step * func(x(i-1), y(i-1));
    yq = y(i-1) + h_step * func(x(i), yp);
    y(i) = 0.5 * (yp + yq);
end
AI 代码解读

Runge-Kutta 算法

4阶-单变量龙格库塔公式

rk45
rk45

4阶-多变量龙格库塔公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

% 单变量龙格库塔Runge_kutta 经典法
%一阶常微分方程的一般表达式的右端函数:func
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
function[x,y]=Runge_kutta(func,a_start,b_end,h_step,y0)
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    k1 = func(x(i-1), y(i-1));
    k2 = func(x(i-1) + h_step/2, y(i-1) + h_step/2*k1);
    k3 = func(x(i-1) + h_step/2, y(i-1) + h_step/2*k2);
    k4 = func(x(i-1) + h_step, y(i-1) + h_step*k3);
    y(i) = y(i-1) + h_step/6*(k1 + 2*k2 + 2*k3 + k4);
end
AI 代码解读
function[x,y]=Runge_kutta45(dyfunc,xspan,y0,h_step)
% 多变量龙格库塔Runge_kutta45
% h_step是步长常选取为0.01;
% ufunc是函数名;
% x0是初始时间值;
% y0是初始化值; 
% n 是迭代步数;
      x = xspan(1):h_step:xspan(2);
      y = zeros(length(y0),length(x));
      y(:,1) = y0(:);
      %循环迭代数值求解部分
     for n=1 : (length(x)-1)
          k1=feval(dyfunc, x(n),y(:,n));
          k2=feval(dyfunc, x(n)+h_step/2,y(:,n)+h_step/2*k1);
          k3=feval(dyfunc, x(n)+h_step/2,y(:,n)+h_step/2*k2);
          k4=feval(dyfunc, x(n+1),y(:,n)+h_step*k3);
          y(:,n+1)=y(:,n)+h_step*(k1+2*k2+2*k3+k4)/6; 
          %按照4阶多变量龙格库塔方法进行数值求解
     end
end
AI 代码解读
clc;
clear all;
y0=[0,2,9];%初值
xspan = [0,200];%求解区间
h_step = 0.001;%ode45是变步长的算法
[x,y] = Runge_kutta45(@lorenz_diff,xspan,y0,h_step);
figure(1);
plot3(y(1,:),y(2,:),y(3,:),'.');title("x-y-z");
figure(2);
plot3(y(1,:),y(3,:),y(2,:),'.');title("x-z-y");
figure(3);
plot3(y(2,:),y(1,:),y(3,:),'.');title("y-x-z");
function dydt = lorenz_diff(t,y)
%{
    x-->y(1),y-->y(2),z-->y(3)
%}
dydt = [        10*(y(2)-y(1));
             -y(1)*y(3)+30*y(1)-y(2)
              y(1)*y(2)-8/3*y(3)];  
end
AI 代码解读

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Matlab 函数库求解

[t, Xt] = ode45(odefun, tspan, X0)
odefun是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名
tspan是区间 [t0 tfinal] 或者一系列散点[t0,t1,…,tf]
X0是初始值向量
t返回列向量的时间点
Xt返回对应T的求解列向量
AI 代码解读

Lorenz系统
在这里插入图片描述

function dydt = lorenz_diff(t,y)
%{
    x-->y(1),y-->y(2),z-->y(3)
%}
dydt = [        10*(y(2)-y(1));
             -y(1)*y(3)+30*y(1)-y(2)
              y(1)*y(2)-8/3*y(3)];  
end
clc;
y0 = [0,2,9];
[t,y] = ode45('lorenz_diff',[0,200],y0); 
%% 调用ode45绘制Lorenz系统 2D
figure(1);
plot(y(:,1),y(:,3),'.');
xlabel('x');ylabel('z');title("x-z");
figure(2);
plot(y(:,1),y(:,2),'.');
xlabel('x');ylabel('y');title("x-y");
figure(3);
plot(y(:,2),y(:,3),'.');
ylabel('y');zlabel('z');title("y-z");
AI 代码解读

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

%% 火焰传播数学模型求解
clc;
clear all;
delta=0.01;
f=@(t,y)y^2-y^3;
opts=odeset('Reltol',1.e-4);
[t1,y1]=ode45(f,[0  2/delta], delta, opts);
figure(1)
plot(t1,y1,'-','Marker','.');
title('数值解曲线');
ylabel('y'); xlabel('t');
AI 代码解读

在这里插入图片描述

Ending
+关注
目录
打赏
0
0
0
0
20
分享
相关文章
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等