数值分析算法 MATLAB 实践 常微分方程求解

简介: 数值分析算法 MATLAB 实践 常微分方程求解

数值分析算法 MATLAB 实践 常微分方程求解

Euler 法及改进算法

function [x,y] = euler(fun,a,b,h,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% f是带求函数的一阶导形式
% a,b分别是自变量取值上下限
% y0 是初始条件y(0)
% h是步长
    s = (b - a) / h; % 求步数
    X = zeros(1, s+1);
    Y = zeros(1, s+1);
    X = a:h:b;
    Y(1) = y0;
    for k = 1:s
        Y(k+1) = Y(k) + h * fun(X(k), Y(k))
    end
    x = X';
    y = Y';
end
%% euler求解微分方程
% dfun1 = y^2-y^3;
 [x, y] = euler(@dfun1, 0,5,0.01,0.1);
% dfun1 = y;
% [x, y] = euler(@dfun1, 0,1,0.1,1);
figure
plot(x, y);
title('显示欧拉格式');

%% 微分方程
function dfun1 = dfun1(t,y)
    dfun1 = y^2-y^3;
    %dfun1 = y;
end
function[x,y]=imp_euler(func,a_start,b_end,h_step,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    % 显式 Euler 作为初始值迭代计算
    yi_0 =  y(i-1) + h_step * func(x(i-1), y(i-1));
    yi_1 = y(i - 1) + h_step * func(x(i), yi_0);
    while abs(yi_1 - yi_0) > 1e-6
        yi_0 = yi_1;
        yi_1 = y(i - 1) + h_step * func(x(i), yi_0);
    end
    y(i) = yi_1;
end
function[x,y]=improve_euler(func,a_start,b_end,h_step,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    yp = y(i-1) + h_step * func(x(i-1), y(i-1));
    yq = y(i-1) + h_step * func(x(i), yp);
    y(i) = 0.5 * (yp + yq);
end

Runge-Kutta 算法

4阶-单变量龙格库塔公式

rk45
rk45

4阶-多变量龙格库塔公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

% 单变量龙格库塔Runge_kutta 经典法
%一阶常微分方程的一般表达式的右端函数:func
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
function[x,y]=Runge_kutta(func,a_start,b_end,h_step,y0)
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    k1 = func(x(i-1), y(i-1));
    k2 = func(x(i-1) + h_step/2, y(i-1) + h_step/2*k1);
    k3 = func(x(i-1) + h_step/2, y(i-1) + h_step/2*k2);
    k4 = func(x(i-1) + h_step, y(i-1) + h_step*k3);
    y(i) = y(i-1) + h_step/6*(k1 + 2*k2 + 2*k3 + k4);
end
function[x,y]=Runge_kutta45(dyfunc,xspan,y0,h_step)
% 多变量龙格库塔Runge_kutta45
% h_step是步长常选取为0.01;
% ufunc是函数名;
% x0是初始时间值;
% y0是初始化值; 
% n 是迭代步数;
      x = xspan(1):h_step:xspan(2);
      y = zeros(length(y0),length(x));
      y(:,1) = y0(:);
      %循环迭代数值求解部分
     for n=1 : (length(x)-1)
          k1=feval(dyfunc, x(n),y(:,n));
          k2=feval(dyfunc, x(n)+h_step/2,y(:,n)+h_step/2*k1);
          k3=feval(dyfunc, x(n)+h_step/2,y(:,n)+h_step/2*k2);
          k4=feval(dyfunc, x(n+1),y(:,n)+h_step*k3);
          y(:,n+1)=y(:,n)+h_step*(k1+2*k2+2*k3+k4)/6; 
          %按照4阶多变量龙格库塔方法进行数值求解
     end
end
clc;
clear all;
y0=[0,2,9];%初值
xspan = [0,200];%求解区间
h_step = 0.001;%ode45是变步长的算法
[x,y] = Runge_kutta45(@lorenz_diff,xspan,y0,h_step);
figure(1);
plot3(y(1,:),y(2,:),y(3,:),'.');title("x-y-z");
figure(2);
plot3(y(1,:),y(3,:),y(2,:),'.');title("x-z-y");
figure(3);
plot3(y(2,:),y(1,:),y(3,:),'.');title("y-x-z");
function dydt = lorenz_diff(t,y)
%{
    x-->y(1),y-->y(2),z-->y(3)
%}
dydt = [        10*(y(2)-y(1));
             -y(1)*y(3)+30*y(1)-y(2)
              y(1)*y(2)-8/3*y(3)];  
end

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Matlab 函数库求解

[t, Xt] = ode45(odefun, tspan, X0)
odefun是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名
tspan是区间 [t0 tfinal] 或者一系列散点[t0,t1,…,tf]
X0是初始值向量
t返回列向量的时间点
Xt返回对应T的求解列向量

Lorenz系统
在这里插入图片描述

function dydt = lorenz_diff(t,y)
%{
    x-->y(1),y-->y(2),z-->y(3)
%}
dydt = [        10*(y(2)-y(1));
             -y(1)*y(3)+30*y(1)-y(2)
              y(1)*y(2)-8/3*y(3)];  
end
clc;
y0 = [0,2,9];
[t,y] = ode45('lorenz_diff',[0,200],y0); 
%% 调用ode45绘制Lorenz系统 2D
figure(1);
plot(y(:,1),y(:,3),'.');
xlabel('x');ylabel('z');title("x-z");
figure(2);
plot(y(:,1),y(:,2),'.');
xlabel('x');ylabel('y');title("x-y");
figure(3);
plot(y(:,2),y(:,3),'.');
ylabel('y');zlabel('z');title("y-z");

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

%% 火焰传播数学模型求解
clc;
clear all;
delta=0.01;
f=@(t,y)y^2-y^3;
opts=odeset('Reltol',1.e-4);
[t1,y1]=ode45(f,[0  2/delta], delta, opts);
figure(1)
plot(t1,y1,'-','Marker','.');
title('数值解曲线');
ylabel('y'); xlabel('t');

在这里插入图片描述

目录
相关文章
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
2天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
3天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
1天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。
|
8天前
|
编解码 算法 数据安全/隐私保护
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
|
7天前
|
算法 数据安全/隐私保护 索引
基于GWO灰狼优化的多目标优化算法matlab仿真
本程序基于灰狼优化(GWO)算法实现多目标优化,适用于2个目标函数的MATLAB仿真。使用MATLAB2022A版本运行,迭代1000次后无水印输出结果。GWO通过模拟灰狼的社会层级和狩猎行为,有效搜索解空间,找到帕累托最优解集。核心步骤包括初始化狼群、更新领导者位置及适应值计算,确保高效探索多目标优化问题。该方法适用于工程、经济等领域复杂决策问题。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法matlab仿真
本项目基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法,实现MATLAB仿真,并对比Kawasaki sampler、IMExpert、IMUnif和IMBayesOpt四种方法。核心在于利用历史采样信息动态调整MCMC参数,以高效探索复杂概率分布。完整程序在MATLAB2022A上运行,展示T1-T7结果,无水印。该算法结合贝叶斯优化与MCMC技术,通过代理模型和采集函数优化采样效率。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
16天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
16天前
|
算法 安全 机器人
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。

热门文章

最新文章