力扣---二叉树OJ题(多种题型二叉树)

简介: 第十三弹——力扣LeetCode每日一题

🌟一、剑指 Offer 55 - I. 二叉树的深度


输入一棵二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度为树的深度。

例如:

给定二叉树 [3,9,20,null,null,15,7],

返回它的最大深度 3 。

🌏1.1 链接:


剑指 Offer 55 - I. 二叉树的深度

🌏1.2 代码一:


int maxDepth(struct TreeNode* root)
{
    if(root==NULL)
    return 0;
    int leftTree=maxDepth(root->left);
    int rightTree=maxDepth(root->right);
    return leftTree>rightTree?leftTree+1:rightTree+1;
}

🌏1.3 代码二:


这种代码是正确的但是在力扣上是不能通过的时间太长具体分析可以看【数据结构】—几分钟简单几步学会手撕链式二叉树(中)中求二叉树高度部分

int maxDepth(struct TreeNode* root)
{
  if (root == NULL)
    return 0;
  return maxDepth(root->left) > maxDepth(root->right) ?
    maxDepth(root->left) + 1 : maxDepth(root->right) + 1;
}

🌏1.4 流程图:


🌟二、100. 相同的树


给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。

如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。

🌏2.1 链接:


🌏2.2 思路:


采用前序,先比较 根 然后 左子树 右子树,而结束条件就是为空树或者不相等

🌏2.3 代码:


bool isSameTree(struct TreeNode* p, struct TreeNode* q)
{
    if(p==NULL&&q==NULL)//两者都为空树则表示相同
    return true;
    if(p==NULL||q==NULL)//有一个不为空则不同
    return false;
    if(p->val!=q->val)//数值不同则不同
    return false;
    return isSameTree(p->left, q->left)&&isSameTree(p->right, q->right);//采用逻辑与当左树不相同时,就没必要比较右树
}

🌏2.4 流程图:


🌟三、965. 单值二叉树


如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。

只有给定的树是单值二叉树时,才返回 true;否则返回 false。

🌏3.1 链接:


965. 单值二叉树

🌏3.2 思路:


采用传递性:ab bc <> ac,然后通过对比根节点和左子树,左子树,右子树来判断值是否相同

🌏3.3 代码:


bool isUnivalTree(struct TreeNode* root)
{
    if(root==NULL)
    return true;
    if(root->left!=NULL&&root->left->val!=root->val)
    //左子树不为空且左子树的值和根值不同
    return false;
    if(root->right!=NULL&&root->right->val!=root->val)
    //右子树不为空且右子树的值和根值不同
    return false;
    return isUnivalTree(root->left)&&isUnivalTree(root->right);
}

🌏3.4 流程图:


🌟四、101. 对称二叉树


给你一个二叉树的根节点 root , 检查它是否轴对称。

🌏4.1 链接:


101. 对称二叉树

🌏4.2 思路:


因为是轴对称,所以要比较左子树的值和右子树的值相同。

🌏4.3 代码:


bool _isSymmetric(struct TreeNode* leftRoot,struct TreeNode* rightRoot)
{
    if(leftRoot==NULL&&rightRoot==NULL)
    return true;
    if(leftRoot==NULL||rightRoot==NULL)
    return false;
    if(leftRoot->val!=rightRoot->val)
    return false;
    return _isSymmetric(leftRoot->left,rightRoot->right)
    &&_isSymmetric(leftRoot->right,rightRoot->left);
}
bool isSymmetric(struct TreeNode* root)
//这个函数是题给出的所以不能修改但不符合所以使用返回值
{
//因为题目给出根不为空所以只需要比较左右子树就可以了
    return _isSymmetric(root->left,root->right);
}

🌏4.4 流程图:


🌟五、144. 二叉树的前序遍历


🌏5.1 链接:


🌏5.2 代码(错误代码):


下面这种写法是不能通过的,因为每次调用i++,都是各是各的造成了干扰具体可以看流程图

int TreeSize(struct TreeNode* root)
{
    return root==NULL?0:TreeSize(root->left)+TreeSize(root->right)+1;
}
void _preorderTraversal(struct TreeNode* root, int* a,int i)
{
    if(root==NULL)
    return;
    a[i++]=root->val;
    _preorderTraversal(root->left,a,i);
    _preorderTraversal(root->right,a,i);
}
int* preorderTraversal(struct TreeNode* root, int* returnSize)
{
    *returnSize=TreeSize(root);
    int* a=(int*)malloc(sizeof(int)*(*returnSize));
    int i=0;
    _preorderTraversal(root,a,i);
    return a;
}

🌏5.3 流程图:


🌏5.4 两种解决方法:


5.4.1💫第一种:给i传地址


📒代码:


int TreeSize(struct TreeNode* root)
{
    return root==NULL?0:TreeSize(root->left)+TreeSize(root->right)+1;
}
void _preorderTraversal(struct TreeNode* root, int* a,int* pi)
{
    if(root==NULL)
    return;
    a[(*pi)++]=root->val;
    _preorderTraversal(root->left,a,pi);
    _preorderTraversal(root->right,a,pi);
}
int* preorderTraversal(struct TreeNode* root, int* returnSize)
{
    *returnSize=TreeSize(root);
    int* a=(int*)malloc(sizeof(int)*(*returnSize));
    int i=0;
    _preorderTraversal(root,a,&i);
    return a;
}

5.4.2💫第而种:全局变量


📒代码:


一点注意:要在一次调用后置零,不然下次调用时就会出现i在上一次的基础值上接着走而数组就不是从0开始的

int TreeSize(struct TreeNode* root)
{
    return root==NULL?0:TreeSize(root->left)+TreeSize(root->right)+1;
}
int i=0;
void _preorderTraversal(struct TreeNode* root, int* a)
{
    if(root==NULL)
    return;
    a[i++]=root->val;
    _preorderTraversal(root->left,a);
    _preorderTraversal(root->right,a);
}
int* preorderTraversal(struct TreeNode* root, int* returnSize)
{
    *returnSize=TreeSize(root);
    int* a=(int*)malloc(sizeof(int)*(*returnSize));
    i=0;//注意这里
    _preorderTraversal(root,a);
    return a;
}

😽总结


😽Ending,今天的链式二叉树的内容就到此结束啦~,如果后续想了解更多,就请关注我吧。

相关文章
|
7月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
336 14
|
8月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
227 10
|
8月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
433 10
|
8月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
221 4
|
8月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
509 9
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
180 6
【LeetCode 31】104.二叉树的最大深度
【LeetCode 31】104.二叉树的最大深度
86 2
【LeetCode 29】226.反转二叉树
【LeetCode 29】226.反转二叉树
99 2
【LeetCode 28】102.二叉树的层序遍历
【LeetCode 28】102.二叉树的层序遍历
103 2
|
存储 算法
二叉树进阶-学会层序遍历助你一次刷完leetcode10道题
文章深入探讨了二叉树的层序遍历方法,并展示了如何通过队列实现层序遍历的算法逻辑,同时指出掌握层序遍历技巧可以帮助解决LeetCode上的多道相关题目。
二叉树进阶-学会层序遍历助你一次刷完leetcode10道题