Python asyncio之协程学习总结 1

简介: Python asyncio之协程学习总结

实践环境

Python 3.6.2

什么是协程

协程(Coroutine)一种电脑程序组件,该程序组件通过允许暂停和恢复任务,为非抢占式多任务生成子程序。协程也可以简单理解为协作的程序,通过协同多任务处理实现并发的函数的变种(一种可以支持中断的函数)。

下面,我们通过日常生活场景为例,对什么是协程进行说明。

假设A某在家每天都要做3件事:洗衣服(使用洗衣机),蒸饭(使用电饭煲),扫地(使用扫地机器人),这三样电器在完成任务后都会发出不一样响声来告诉A某事情已经完成。

这里,暂且假设A某智商有问题,每次都是严格按顺序做这三件事:先洗完衣服,再把饭蒸好,最后才开始扫地。

接下来,我们用一段简单的代码来模拟上述整个过程,并记录整个过程的耗时,其中使用了3个简单的普通函数,分别模拟上述3件事情,如下:

import time
from datetime import datetime
def do_washing():
    print(datetime.now(), ':开始洗衣服')
    time.sleep(3)  # 洗衣服 # 用程序休眠来模拟过程,且别计较时间大小
    print(datetime.now(), ':通知A某衣服洗好了') 
def steame_rice():
    print(datetime.now(), ':开始蒸饭')
    time.sleep(5)  # 蒸饭
    print(datetime.now(), ':通知A某饭蒸好了')
def do_clearing():
    print(datetime.now(), ':开始扫地')
    time.sleep(2)  # 扫地
    print(datetime.now(), ':通知A某地扫完了')
if __name__ == '__main__':
    startTime = time.time()
    do_washing()
    steame_rice()
    do_clearing()
    endTime = time.time()
    print("扫地+蒸饭+洗衣服总耗时: ", endTime - startTime)

程序输出:

2023-04-09 23:33:50.001204 :开始洗衣服
2023-04-09 23:33:53.002765 :衣服洗好了
2023-04-09 23:33:53.002765 :开始蒸饭
2023-04-09 23:33:58.013337 :通知A某饭蒸好了
2023-04-09 23:33:58.013337 :通知A某开始扫地
2023-04-09 23:34:00.024784 :通知A某地扫完了
扫地+蒸饭+洗衣服总耗时:  10.023579835891724

直到有一天,A某的朋友来他家做客,体验到他的“高效”办事效率后,建议他不用等每件事情都做完才做下一件事情。A某听后,虚心采纳,并告诉自己要开始培养新的习惯。

第二天开始呢,A某开始改变自己,把衣服扔洗衣机,并启动机洗程序后,就去淘米蒸饭了,等电饭煲开始蒸饭后,就去清扫地板了。

接下来,我们对上述代码进行稍微修改,以便模拟上述过程,并记录整个过程的耗时,如下:

import time
from datetime import datetime
import asyncio
async def do_washing():
    print(datetime.now(),':开始洗衣服')
    await asyncio.sleep(3)
    print(datetime.now(),':通知A某衣服洗好了')
async def do_clearing():
    print(datetime.now(), ':开始扫地')
    await asyncio.sleep(5)
    print(datetime.now(), ':通知A某地扫完了')
async def steame_rice():
    print(datetime.now(), ':开始蒸饭')
    await asyncio.sleep(2)
    print(datetime.now(), ':通知A某饭蒸好了')
tasks = [
    do_washing(),
    steame_rice(),
    do_clearing()
]
if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    start_time = time.time()
    loop.run_until_complete(asyncio.wait(tasks))
    loop.close()
    end_time = time.time()
    print("扫地+蒸饭+洗衣服总耗时: ", end_time - start_time)

程序输出:

2023-04-09 23:35:17.422790 :开始扫地
2023-04-09 23:35:17.422790 :开始蒸饭
2023-04-09 23:35:17.422790 :开始洗衣服
2023-04-09 23:35:19.427500 :通知A某饭蒸好了
2023-04-09 23:35:20.427813 :通知A某衣服洗好了
2023-04-09 23:35:22.429780 :通知A某地扫完了
扫地+蒸饭+洗衣服总耗时:  5.0069899559021

不得不夸A某进步真大,相比之前,这次耗时减少了近一半。

以上这段代码就是协程的简单实现,充分体现了协程的3个特点:

  1. 多任务并行:A某同时完成了3项任务--分别代表3个协程。
  2. 异步任务:3项任务中,没有一项是需要A某在一旁一直看着直到做完的,每项任务开启后,A某都可以离开去做别的任务。
  3. 协作式(非抢占式):每项任务能否“占用”A某,取决于A某是否正被其它任务“占用”,即是否有任务主动“让出”A某,不是靠“抢占”,更像是协商。

有了线程为啥还要协程?

协程是用户视角的一种抽象,操作系统并没有这个概念,其主要思想是在用户态实现调度算法,用少量线程完成大量任务的调度。

相对线程而言,协程具备以下优势:

  • 减少内存占用
    协程的创建成本远小于线程,可以设计得很小,小到KB级别,大大降低内存占用。所以,内存资源有限的情况下,可以创建更多协程,从而实现更高的并发。
  • 减少上下文切换开销,节约CPU资源

如上图,线程之间的切换请求,由系统内核来实现,而协程之间的切换,则可由用户自由控制,即交由用户态的代码来完成,极大程度避免了系统内核级线程上下文切换造成的CPU资源浪费。具体实现思路如下:

  1. 尽量减少可执行的线程,这样切换次数必然会少
  2. 让线程尽可能的处于运行状态,而不是阻塞让出时间片

一个线程可以拥有多个协程,主要注意的是,一个线程内的多个协程却是串行的,无论CPU有多少个核,因为协程本质上还是一个函数,当一个协程运行时,其它协程必须挂起。实际开发过程中,可以使用协程在将一些耗时的IO操作异步化,例如写文件、耗时IO请求等来提升程序执行效率。

相关语法说明

接下来,就上面的例子,对协程相关语法进行说明。

async def do_washing()

使用async def语法定义协程函数do_washing

协程函数示例:

async def func(param1, param2):
    do_stuff()
    await some_coroutine()

注意:

  1. 使用async def语法定义的函数始终是协程函数,即使它们不包含waitasync关键字。
  2. 采用传统的函数调用方式,直接调用协程函数,函数不会被立即执行,会产生类似RuntimeWarning: coroutine 'xxxx协程函数' was never awaited的告警日志,并返回一个协程对象。仅运行事件循环时才会运行协程。
  3. await挂起当前协程以等待一个可等待(awaitable)对象--协程函数或者实现了__await__()的对象,直到可等待对象返回结果。可以将这个可等待对象,简单的理解为待执行的异步任务(一般是比较耗时的任务,比如开篇示例中用作比拟的煲饭)。注意:
  1. await只能在协程函数内部使用。
  2. 程序遇到await关键词时,会将程序控制权交给主程序,由主程序分配给其它协程。当可等待对象返回结果,并且此时程序控制权还被其它协程占用时,则被挂起的协程依旧无法继续往下运行,直到获取程序控制权。关于这个结论,可用下述示例代码进行验证:
from datetime import datetime
import asyncio
async def do_washing():
    print(datetime.now(),':开始洗衣服')
    await asyncio.sleep(0.5)
    for i in range(10000):
        if i % 4000 == 0:
            print('洗衣服')
    print(datetime.now(),':衣服洗好了')
async def do_cooking():
    print(datetime.now(), ':开始煲饭')
    for i in range(100000):
        if i%20000 == 0:
            print('煲饭')
    await asyncio.sleep(5)
    print(datetime.now(), ':饭煲好了')
tasks = [
    do_cooking(),
    do_washing()
]
if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(asyncio.wait(tasks))
    loop.close()
  1. 输出:
2023-04-10 23:53:37.804727 :开始洗衣服
2023-04-10 23:53:37.804727 :开始煲饭
煲饭
煲饭
煲饭
煲饭
煲饭
洗衣服
洗衣服
洗衣服
2023-04-10 23:53:38.310586 :衣服洗好了
2023-04-10 23:53:42.811876 :饭煲好了
asyncio.sleep(2)

给定秒数后完成的协程--阻塞指定的秒数。sleep函数还可以指定result参数,协程完成时将该参数值返回给调用者(默认返回None),如下:

result = await asyncio.sleep(0.5, result='task done')
print(result) # 输出:task done

sleep总是会挂起当前任务,以允许其他任务运行。可以利用这个特性,将秒数设置为0,即asyncio.sleep(0),以便提供一个经优化的路径以允许其他任务运行。 这可供长时间运行的函数使用,避免调用该函数时阻塞事件循环。

asyncio.get_event_loop()

为当前上下文获取事件循环(event loop),返回一个实现了AbstractEventLoop接口的事件循环对象。如果没有为当前上下文设置任何事件循环,且当前策略没有指定创建一个事件循环,则抛出异常。必须返回非None值。

AbstractEventLoop.run_until_complete(asyncio.wait(tasks))

运行直到asyncio.wait(tasks)运行完成。返回asyncio.wait(tasks)的运行结果,或者抛出异常。

asyncio.run(coro, *, debug=False)

执行协程 coro 并返回结果。

此函数会运行传入的协程,负责管理 asyncio 事件循环,终结异步生成器,并关闭线程池。

当有其他 asyncio 事件循环在同一线程中运行时,此函数不能被调用。

如果debugTrue,事件循环将以调试模式运行。

此函数总是会创建一个新的事件循环并在结束时关闭之。它应当被用作 asyncio 程序的主入口点,理想情况下应当只被调用一次。

示例:

async def main():
    await asyncio.sleep(1)
    print('hello')
asyncio.run(main())

3.7 新版功能.

asyncio.wait(tasks)

具备完整参数列表的wait函数定义如下

asyncio.wait(fs, *, loop=None, timeout=None, return_when=ALL_COMPLETED)

并发地运行 fs可迭代对象中的可等待对象,并进入阻塞状态直到满足return_when参数所指定的条件(缺省参值为ALL_COMPLETED)。

注意,aws参数不能为空。

函数返回 Future 集合: (done, pending)

请注意,此函数不会引发 asyncio.TimeoutError。当超时发生时,未完成的 Future 将在指定秒数后被返回。

return_when 指定此函数应在何时返回,可选值如下:

  • FIRST_COMPLETED
    函数将在任意可等待对象结束或取消时返回。
  • FIRST_EXCEPTION
    函数将在任意可等待对象因引发异常而结束时返回。当没有引发任何异常时它就相当于ALL_COMPLETED
  • ALL_COMPLETED
    函数将在所有可等待对象结束或取消时返回。
目录
相关文章
|
17天前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
146 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
3天前
|
调度 开发者 Python
异步编程在Python中的应用:Asyncio和Coroutines
异步编程在Python中的应用:Asyncio和Coroutines
8 1
|
5天前
|
关系型数据库 MySQL 数据处理
探索Python中的异步编程:从asyncio到异步数据库操作
在这个快节奏的技术世界里,效率和性能是关键。本文将带你深入Python的异步编程世界,从基础的asyncio库开始,逐步探索到异步数据库操作的高级应用。我们将一起揭开异步编程的神秘面纱,探索它如何帮助我们提升应用程序的性能和响应速度。
|
10天前
|
调度 Python
python知识点100篇系列(20)-python协程与异步编程asyncio
【10月更文挑战第8天】协程(Coroutine)是一种用户态内的上下文切换技术,通过单线程实现代码块间的切换执行。Python中实现协程的方法包括yield、asyncio模块及async/await关键字。其中,async/await结合asyncio模块可更便捷地编写和管理协程,支持异步IO操作,提高程序并发性能。协程函数、协程对象、Task对象等是其核心概念。
|
14天前
|
调度 开发者 Python
异步编程在Python中的应用:Asyncio和Coroutines
【10月更文挑战第12天】本文介绍了Python中的异步编程,重点讲解了`asyncio`模块和协程的概念、原理及使用方法。通过异步编程,程序可以在等待I/O操作时继续执行其他任务,提高整体效率。文章还提供了一个简单的HTTP服务器示例,展示了如何使用`asyncio`和协程编写高效的异步代码。
14 2
|
14天前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用
|
15天前
|
调度 开发者 Python
异步编程在Python中的应用:Asyncio和Coroutines
【10月更文挑战第10天】本文介绍了Python中异步编程的应用,重点讲解了`asyncio`模块和协程的概念、原理及使用方法。通过一个简单的HTTP服务器示例,展示了如何利用`asyncio`和协程实现高效的并发处理。
16 1
|
16天前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
232 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
14天前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从入门到精通Python,打好 LLM大模型的基础
Python学习圣经:从0到1精通Python,打好AI基础
|
16天前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
35 0