Polar for Mysql 列存索引常用方法

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS SQL Server,基础系列 2核4GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: Polar for Mysql 列存索引常用方法

添加列存索引
创建表:

CREATE TABLE t10(
  col1 INT COMMENT 'COLUMNAR=1',
  col2 DATETIME COMMENT 'COLUMNAR=1',
  col3 VARCHAR(200)
) ENGINE InnoDB;

修改表:

查看最后执行SQL

-- 查看最后执行SQL 阈值
SHOW STATUS LIKE 'Last_query_cost';
-- 查询cost阈值
SHOW VARIABLES LIKE 'imci_ap_threshold';

查看表是否列存索引

SELECT * FROM INFORMATION_SCHEMA.IMCI_INDEXES WHERE TABLE_NAME LIKE '%by_wechat_message%';

检查执行SQL 字段缺少列存索引

CALL dbms_imci.check_columnar_index("
    SELECT 
            domain, subject_id AS subjectId, 
            SUM(question_num) AS questionNum , 
            SUM(tk_question_num) AS tkQuestionNum 
    FROM `ask_question_statistic` 
    WHERE dt >= 20230501 AND dt <= 20230531 
    GROUP BY domain, subject_id
");

强制执行列存查询

SELECT /*+ SET_VAR(cost_threshold_for_imci=0) */
        domain, subject_id AS subjectId, 
        SUM(question_num) AS questionNum , 
        SUM(tk_question_num) AS tkQuestionNum 
FROM `ask_question_statistic` 
WHERE dt >= 20230501 AND dt <= 20230531

设置并列索引 =16
-- 后台控制

innodb_polar_parallel_ddl_threads = 16;

-- 查看是否开启并列查询

SHOW VARIABLES LIKE "innodb_polar_parallel_ddl_threads"

查看列存索引创建状态

-- 表中查看索引的状态信息;
SELECT * FROM INFORMATION_SCHEMA.IMCI_INDEXES;
-- 表中查看索引的写入速度;
SELECT * FROM INFORMATION_SCHEMA.IMCI_INDEX_STATS;
-- 参见查看DDL执行速度和进度
SELECT * FROM INFORMATION_SCHEMA.IMCI_ASYNC_DDL_STATS;

●并行DDL
https://help.aliyun.com/document_detail/193259.html?spm=a2c4g.172533.0.i1
●列存索引排序
https://help.aliyun.com/document_detail/602366.html?spm=a2c4g.607775.0.0.7d9418a8RmlFbt

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
201 66
|
19天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
118 9
|
3月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
2天前
|
SQL 存储 关系型数据库
MySQL秘籍之索引与查询优化实战指南
最左前缀原则。不冗余原则。最大选择性原则。所谓前缀索引,说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时去指定),比如以产品名称的前 10 位来建索引,这样建立起来的索引更小,查询效率更快!
41 22
 MySQL秘籍之索引与查询优化实战指南
|
4天前
|
存储 关系型数据库 MySQL
MySQL中为什么要使用索引合并(Index Merge)?
通过这些内容的详细介绍和实际案例分析,希望能帮助您深入理解索引合并及其在MySQL中的
21 10
|
12天前
|
SQL 存储 关系型数据库
MySQL/SqlServer跨服务器增删改查(CRUD)的一种方法
通过上述方法,MySQL和SQL Server均能够实现跨服务器的增删改查操作。MySQL通过联邦存储引擎提供了直接的跨服务器表访问,而SQL Server通过链接服务器和分布式查询实现了灵活的跨服务器数据操作。这些技术为分布式数据库管理提供了强大的支持,能够满足复杂的数据操作需求。
55 12
|
15天前
|
存储 缓存 关系型数据库
MySQL的count()方法慢
MySQL的 `COUNT()`方法在处理大数据量时可能会变慢,主要原因包括数据量大、缺乏合适的索引、InnoDB引擎的设计以及复杂的查询条件。通过创建合适的索引、使用覆盖索引、缓存机制、分区表和预计算等优化方案,可以显著提高 `COUNT()`方法的执行效率,确保数据库查询性能的提升。
442 12
|
24天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
61 18
|
16天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
48 8
|
23天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
22 7

相关产品

  • 云原生分布式数据库 PolarDB-X
  • 云数据库 RDS MySQL 版