深度学习中各个模型简介

简介: 深度学习中各个模型简介
模型名称 模型简介
AlexNet 首次在 CNN 中成功的应用了 ReLU, Dropout 和 LRN,并使用 GPU 进行运算加速。
VGG19 在 AlexNet 的基础上使用 3*3 小卷积核,增加网络深度,具有很好的泛化能力。
GoogLeNet 在不增加计算负载的前提下增加了网络的深度和宽度,性能更加优越。
ResNet50 Residual Network,引入了新的残差结构,解决了随着网络加深,准确率下降的问题。
ResNetvd 服务器端应用实用模型。融合多种对 ResNet 改进策略,ResNet50vd的top1准确率达到79.1%,相比标准版本提升2.6%。在V100上预测一张图像的时间3ms左右。进一步采用SSLD蒸馏方案,其top1准确率可以达到82.39%。
Inceptionv4 将 Inception 模块与 Residual Connection 进行结合,通过ResNet的结构极大地加速训练并获得性能的提升。
MobileNetV1 将传统的卷积结构改造成两层卷积结构的网络,在基本不影响准确率的前提下大大减少计算时间,更适合移动端和嵌入式视觉应用。
MobileNetV2 MobileNet结构的微调,直接在 thinner 的 bottleneck层上进行 skip learning 连接以及对 bottleneck layer 不进行 ReLu 非线性处理可取得更好的结果。
MobileNetV3 移动端应用实用模型。MobileNetV3是对MobileNet系列模型的又一次升级,MobileNetV3largex10的top1准确率达到75.3%,在骁龙855上预测一张图像的时间只有19.3ms。进一步采用SSLD蒸馏方案,其top1准确率可以达到79%。
SENet154vd 在ResNeXt基础、上加入了 SE(Sequeeze-and-Excitation) 模块,提高了识别准确率,在 ILSVRC 2017 的分类项目中取得了第一名。
ShuffleNetV2 ECCV2018,轻量级 CNN 网络,在速度和准确度之间做了很好地平衡。在同等复杂度下,比 ShuffleNet 和 MobileNetv2 更准确,更适合移动端以及无人车领域。
efficientNet 同时对模型的分辨率,通道数和深度。进行缩放,用极少的参数就可以达到SOTA的精度。
xception71 对inception-v3的改进,用深度可分离卷积代替普通卷积,降低参数量的同时提高了精度。
dpn107 融合了densenet和resnext的特点。
mobilenetV3smallx10 在v2的基础上增加了se模块,并且使用hard-swish激活函数。在分类、检测、分割等视觉任务上都有不错表现。
DarkNet53 检测框架yolov3使用的backbone,在分类和检测任务上都有不错表现。
DenseNet161 提出了密集连接的网络结构,更加有利于信息流的传递。
ResNeXt152vd64x4d 提出了cardinatity的概念,用于作为模型复杂度的另外一个度量,并依据该概念有效地提升了模型精度。
SqueezeNet11 提出了新的网络架构Fire Module,通过减少参数来进行模型压缩。
相关文章
|
14天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
55 5
|
8天前
|
机器学习/深度学习 数据采集 运维
使用 Python 实现深度学习模型:智能食品生产线优化
使用 Python 实现深度学习模型:智能食品生产线优化
45 13
|
5天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
25 5
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
25 1
|
16天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
16天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
36 2
|
15天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
50 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
58 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
18 0
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略