LeNet5模型与全连接模型的差异

简介: LeNet5模型与全连接模型的差异

1 问题

深度学习训练过程中,有很多的训练模型,我们组就在思考LeNet模型与之前运用的全连接模型在训练精度损失与验证精度损失上有什么差别?


2 方法

这是LeNet模型的主要代码,对数据进行两成卷积与两次池化之后再建立三成全连接即可。

class MyNet(nn.Module):
   def __init__(self):
       super().__init__()
       self.conv1 = nn.Conv2d(
           in_channels=1,
           out_channels=6,
           kernel_size=5,
           stride=1,
           padding=0
       )
       self.avg_pool_1 = nn.AvgPool2d(2)
       self.conv2 = nn.Conv2d(
           in_channels=6,
           out_channels=16,
           kernel_size=5,
           stride=1,
           padding=0
       )
       self.avg_pool_2 = nn.AvgPool2d(2)
       self.fc1 = nn.Linear(
           in_features=256,  
           out_features=120
       )
       self.fc2 = nn.Linear(
           in_features=120,
           out_features=84
       )
       self.fc3 = nn.Linear(
           in_features=84,
           out_features=10
       )
   def forward(self, x):
       x = self.conv1(x)
       x = self.avg_pool_1(x)
       x = self.conv2(x)
       x = self.avg_pool_2(x)
       x = torch.flatten(x, 1)  # ! [B,C,H,W]
       x = self.fc1(x)
       x = self.fc2(x)
       out = self.fc3(x)
       return out
LeNet模型结果如下:

全连接模型结果如下:


3 结语

对于LeNet模型与全连接模型结果比较分析,我训练了50个周期来相比较,可发现LeNet模型相比于全连接模型训练精度与验证精度上升地更快,且验证损失的下降也更快,说明LeNet模型有着更高的训练效率,能够运用更少的周期达到更高的精度与更少的损失。


目录
相关文章
|
5月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
|
5月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
|
机器学习/深度学习
使用传统全连接神经网络训练minist数据集(一)
使用传统全连接神经网络训练minist数据集(一)
105 0
|
7月前
|
机器学习/深度学习 存储 算法
模型部署系列 | 卷积Backbone量化技巧集锦
模型部署系列 | 卷积Backbone量化技巧集锦
111 0
|
7月前
|
机器学习/深度学习 算法 PyTorch
手把手教你搭建一个深度网络模型:从输入层-激活函数-损失函数-优化方法-输出层-执行训练
我这几天遇到一个不错的范例,将的是一层一层教我们搭建一个神经网络,其实很多我接触过的伙伴对修改模型架构这块还是头疼。其实我么可以从简单的神经网络层开始,自己DIY每一层,对上手修改架构有帮助。这里用的是paddle框架,当然玩pytorch的朋友也别急着关掉,因为我这几天刷到的pytorch感觉和飞桨的这块几乎是非常相似。只是有点点表达不一样,其他都完全一样。甚至连编程习惯都非常一样。下面是来自PaddlePaddle FLuid深度学习入门与实战一书的案例。
181 0
|
机器学习/深度学习 算法 数据处理
Backbone 在神经网络中意味着什么?
Backbone 在神经网络中意味着什么?
132 0
|
机器学习/深度学习 人工智能 算法
【Pytorch神经网络理论篇】 31 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型
在深度学习领域中,模型越深意味着拟合能力越强,出现过拟合问题是正常的,训练误差越来越大却是不正常的。
378 0
|
机器学习/深度学习 人工智能 PyTorch
【Pytorch神经网络理论篇】 30 图片分类模型:Inception模型
原始的Inception模型采用多分支结构(见图1-1),它将1×1卷积、3×3卷积最大池化堆叠在一起。这种结构既可以增加网络的宽度,又可以增强网络对不同尺寸的适应性。
397 0
|
机器学习/深度学习 编解码 算法
【Pytorch神经网络理论篇】 32 PNASNet模型:深层可分离卷积+组卷积+空洞卷积
PNASNet模型是Google公司的AutoML架构自动搜索所产生的模型,它使用渐进式网络架构搜索技术,并通过迭代自学习的方式,来寻找最优网络结构。即用机器来设计机器学习算法,使得它能够更好地服务于用户提供的数据。该模型在ImageNet数据集上Top-1准确率达到82.9%,Top-5准确率达到96。2%,是目前最好的图片分类模型之一。
216 0