【Pytorch神经网络理论篇】 31 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 在深度学习领域中,模型越深意味着拟合能力越强,出现过拟合问题是正常的,训练误差越来越大却是不正常的。

同学你好!本文章于2021年末编写,获得广泛的好评!


故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,


Pytorch深度学习·理论篇(2023版)目录地址为:


CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录

本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!

https://v9999.blog.csdn.net/article/details/127587345


欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~

641bb5356cdc40fe9a6edbf975bb8f30.png


1 ResNet模型


9bbebd9422c54205bdaa06d8c05f7f5a.png


在深度学习领域中,模型越深意味着拟合能力越强,出现过拟合问题是正常的,训练误差越来越大却是不正常的。


1.1 训练误差越来越大的原因


在反向传播中,每一层的梯度都是在上一层的基础上计算的。随着层数越来越多,梯度在多层传播时会越来越小,直到梯度消失,于是随着层数越来越多,训练误差会越来越大。


ResNet模型的动机是要解决网络层次比较深时无法训练的问题,借鉴了高速网络模型的思想,设计出了一个残差连接模块。这种模块可以让模型的深度达到152层。


1.2 残差连接的结构


在标准的前馈卷积神经网络上,加一个直接连接,绕过中间层的连接方式,使得输入可以直达输出。


1.2.1 残差连接的结构图


08295e5a157a4ecc91c6c2647554f673.png


1.2.2 残差连接的定义描述


d8d8a482531145b1aaf62d729ae969fb.png


1.3  残差连接的原理


残差连接通过将原始的输入绕过中间的变化直接传给Addiion,在反向传播的过程中,误差传到输入层时会得到两个误差的加和,一个是左侧的多层网络误差,一个是右侧的原始误差。左侧会随着层数变多而梯度越来越小,右侧则是由Addition直接连到输入层,所以还会保留Addition的梯度。这样输入层得到的加和后的梯度就没有那么小了,可以保证接着将误差往下传。


1.3.1 残差连接的原理


这种方式看似解决了梯度越传越小的问题,但是残差连接在正向同样也起到作用。


由于正向的作用,网络结构是并行的模型,即残差连接的作用是将网络串行改成并行。


这就是lnception V4模型结合残差网络的原理,没有使用残差连接,反而实现了与Inception-ResNet V2模型等同的效果的原因。


2 DenSeNet模型


DenseNet模型于2017年被提出,该模型是密集连接的卷积神经网络CNN,每个网络层都会接受前面所有层作为其输入,也就是说网络每一层的输入都是前面所有层输出的并集。


2.1 DenSeNet模型的网络结构


2.1.1 DenSeNet模型


每一个特征图都与前面所有层的特征图相连,即每一层都会接受前面所有层作为其输入。对于一个L层的网络,DenseNet模型共包含L(L+1)2个连接。


2.1.2  DenSeNet模型图


bc2c392a4d544438b6f76b78d27a5a10.png


2.2 DenseNet模型的优势


1.DenseNet模型的每一层都与前面所有层紧密连接、可以直达最后的误差信号,升梯度的反向传播,减轻梯度消失的问题,使得网络更容易训练。


2.DenseNet模型通过拼接特征图来实现短路连接,从而实现特征重用,并且采用较小的增长率,每个层所独有的特征图比较小。


3.增强特征图的传播,前面层的特征图直接传给后面层,可以充分利用不同层级的特征。


2.3 DenseNet模型的缺陷


DenseNet模型可能耗费很多GPU显存,一般显卡无法存放更深的DenseNet模型,需要经过精心优化。


2.4 稠密快


稠密块是DenseNet模型中的特有结构。


2.4.1 稠密块的组成


稠密块中含有两个卷积层,这两个卷积层的卷积核尺寸各不相同(分别为1×1和3×3)。每一个稠密块由L个全连接层组成。


全连接仅在一个稠密块中,不同稠密块之间是没有全连接的,即全连接只发生在稠密块中。


f4679fd189594dc2ae7452844b5a7064.png


3 EffcientNet模型


MnasNet模型是谷歌团队提出的一种资源约束的终端CNN模型的自动神经结构搜索方法。该方法使用强化学习的思路进行实现。


3.1 EffcientNet模型的步骤


1、使用强化学习算法实现的MnasNet模型生成基准模型EfficientNet-B0。


2、采用复合缩放的方法,在预先设定的内存和计算量大小的限制条件下,对EfficientNet-BO模型的深度、宽度(特征图的通道数)、图片尺寸这3个维度同时进行缩放这3个维度的缩放比例由网格搜索得到,最终输出了EfficientNet模型。


3.2 EffcientNet模型的调参示意图


dcff0d94b64947759f7b0da6169cfff7.png


  • 图1-12(a)是基准模型。


  • 图1-12(b)是在基准模型的基础上进行宽度缩放,即增加图片的通道数量。


  • 图1-12(c)是在基准模型的基础上进行深度缩放,即增加网络的层数。


  • 图1-12(d)是在基准模型的基础上对图片尺寸进行缩放。


  • 图1-12(e)是在基准模型的基础上对图片的深度、宽度、尺寸同时进行缩放。


3.3 EfficientNet模型的效果


在ImageNet数据集上Top-1准确率达到84.4%,Top-5准确率达到97.1%,但是其大小仅仅为已知最好深度卷积模型的1/8.4,而且速度比已知最好深度卷积模型快6.1倍。


EfcientNet模型满足了在不降低模型准确率的条件下,减少模型的计算量或内存需求(参见arXⅳ网站上编号为“1905.11946”的论文)。


3.4 MBConv卷积块


EficientNet模型的内部是通过多个MBConv卷积块实现。


3.4.1 MBConv卷积块特点


MBConv卷积块使用类似残差连接的结构,不同的是在短连接部分使用了SE模块,并且将常用的ReLU激活函数换成了Swish激活函数,还使用DropConnect层来代替传统的Dropout层。


3.4.2 MBConv卷积块的结构


2e6ef7b1eec6403a811f306c2c8fb23a.png


3.4.3  Tip


在SE模块中没有使用BN操作,而且其中的Sigmoid激活函数也没有被Swish激活函数替换。


3.5 DropConnect


在深度神经网络中,DropConnect层与Dropout层的作用都是防止模型产生过拟合的情况。DropConnect层的效果会更好一些。


3.5.1 DropConnect层与Dropout层对比


DropConnect层:在训练神经网络模型的过程中,对隐藏层节点的输入进行随机的丢弃。


Dropout层:在训练神经网络模型的过程中,对隐藏层节点的输出进行随机的丢弃


3.5.2  DropConnect层与Dropout层结构图


6cecd7aa0e114e2b99074bd80080b82c.png

目录
打赏
0
0
0
0
691
分享
相关文章
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
223 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
293 66
昇腾910-PyTorch 实现 ResNet50图像分类
本实验基于PyTorch,在昇腾平台上使用ResNet50对CIFAR10数据集进行图像分类训练。内容涵盖ResNet50的网络架构、残差模块分析及训练代码详解。通过端到端的实战讲解,帮助读者理解如何在深度学习中应用ResNet50模型,并实现高效的图像分类任务。实验包括数据预处理、模型搭建、训练与测试等环节,旨在提升模型的准确率和训练效率。
203 54
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
708 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
681 1
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
241 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
262 59
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
203 0
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等