【Pytorch神经网络理论篇】 30 图片分类模型:Inception模型

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 原始的Inception模型采用多分支结构(见图1-1),它将1×1卷积、3×3卷积最大池化堆叠在一起。这种结构既可以增加网络的宽度,又可以增强网络对不同尺寸的适应性。

同学你好!本文章于2021年末编写,获得广泛的好评!


故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,


Pytorch深度学习·理论篇(2023版)目录地址为:


CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录

本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通过将深度学习知识与Pytorch的高效结合,帮助各位新入门的读者理解深度学习各个模板之间的关系,这些均是在Pytorch上实现的,可以有效的结合当前各位研究生的研究方向,设计人工智能的各个领域,是经过一年时间打磨的精品专栏!

https://v9999.blog.csdn.net/article/details/127587345

欢迎大家订阅(2023版)理论篇

以下为2021版原文~~~~

641bb5356cdc40fe9a6edbf975bb8f30.png


1 Inception系列模型


Incepton系列模型包括V1、V2、V3、V4等版本,主要解决深层网络的三个问题:


  • 训练数据集有限,参数太多,容易过拟合;


  • 网络越大,计算复杂度越大,难以应用;


  • 网络越深,梯度越往后传,越容易消失(梯度弥散),难以优化模型。


1.1 多分支结构


原始的Inception模型采用多分支结构(见图1-1),它将1×1卷积、3×3卷积最大池化堆叠在一起。这种结构既可以增加网络的宽度,又可以增强网络对不同尺寸的适应性。


d106c6bafb3b4690a40766568552785f.png


Inception模型包含3种不同尺寸的卷积和1个最大池化,增强了网络对不同尺寸的适应性。


Inception模型可以让网络的深度和宽度高效率地扩充,提高准确率。


Inceρtion模型本身如同大网络中的一个小网络,其结构可以反复堆叠在一起形成大网络。


1.2 全局均值池化(文章来源:Network in Network)


全局均值池化是指在平均池化层中使用同等大小的过滤器对特征进行过滤。一般使用它用来代替深层网络结构中最后的全连接输出层。


1.2.1 全局均值池化的具体用法


在卷积处理之后,对每个特征图的一整张图片进行全局均值池化,生成一个值,即每个特征图相当于一个输出特征,这个特征就表示我们输出类的特征。


即在做1000个分类任务时,最后一层的特征图个数要选择1000,这样就可以直接得出分类。


1.2.2 Network in Network中的实现


作者利用其进行1000个物体分类,最后设计了一个4层的NIN(Network In Network)+全局均值池化,如图1-2所示。


1e104202ac96457fbe3306e0894f95a3.png


2 Inception V1模型


Inception V1模型在原有的Inception模型上做了一些改进。原因是在Inception模型中,


3 Inception V2模型


卷积核是针对其上一层的输出结果进行计算的,因此会存在,5×5卷积核所需的计算量就会很大,所生成的特征图很厚。


为了避免这一现象,InceptionV1模型在3×3卷积前、5×5卷积前、3×3最大池化后分别加上了1×1卷积,以起到降低特征图厚度的作用(其中1×1卷积主要用来降维)


3.1 InceptionV1模型图


InceptionV1模型中有4个分支。


3.1.1 分支介绍


第1个分支:对输入进行1×1卷积,1×1卷积既可以跨通道组织信息,提高网络的表达能力,又可以对输出通道升维和降维。


第2个分支:先使用1×1卷积,然后使用3×3卷积,相当于进行了两次特征变换。


第3个分支:先使用1×1卷积,然后使用5×5卷积。


第4个分支:3×3最大池化后直接使用1×1卷积。


3.1.2 InceptionV1模型图


718e6cf700d14540970976940f2b3fbb.png


3.1.3  InceptionV1的特点


4个分支都使用了1×1卷积,有的分支只使用了1×1卷积,有的分支使用了1×1的卷积后也会再使用其他尺寸卷积。


因为1×1卷积的性价比很高,用很小的计算量就能增加一层特征变换和非线性化。最终lnceptionV1模型的4个分支通过一个聚合操作合并(使用torch.cat函数在输出通道数的维度上聚合)。


4 Inception V2模型


4.1 Inception V2模型的改进措施


Inception V2模型在lnceptionV1模型的卷积之后加入了BN层,使每一层的输出都归一化处理,减少了内部协变量移位问题;同时还使用梯度截断的技术,增加了训练的稳定性。


lnceptionV2模型还借鉴VGG模型,用两个3×3卷积替代InceptionV1模型中的5×5卷积,降低参数数量,提升运算速度。


4.2 Inception V2 模型


09c0ee3a92e34fcf81d228449945969c.png


5 Inception V3模型


Inception V3模型没有再加入其他的技术,只是将Inception V2的卷积核变得更小


5.1 Inception V3模型具体做法


将nception V2模型的3×3分解成两个一维的卷积(1×3,3×1)。这种方法主要是基于线性代数的原理,即一个[n,n]的矩阵,可以分解成矩阵[n,1]×矩阵[1,n]。


84e6bf1765b24e2c851df8a2f0ff2058.png


5.2 Inception V3模型的实际效果计算


假设有256个特征输入和256个特征输出,假定lnception层只能执行3×3卷积,也就是总共要完成256×256×3×3次的卷积(589824次乘积累加运算)。


假设现在需要减少进行卷积运算的特征的数量,将其变为64(即256/4)个。在这种情况下,首先进行256→64的特征的1×1卷积,然后在所有Inception层的分支上进行64次卷积,最后使用一个来自64→256的特征的1×1卷积。


256×64×1×1=16384


64×64×3×3 = 36864


64×256×1×1=16384


相比之前的589824次,现在共有69632(16384+36864+16384)次的计算量。


在实际测试中,这种结构在前几层效果不太好,但对特征图大小为12~20的中间层效果明显,也可以大大增加运算速度。另外,网络输入从224×224变为299×299,设计了35×35/17×17/8×8的模块。


6 Inception V4模型


6.1 Inception V4模型改进手段


在InceptionV3模型的基础上结合残差连接技术进行结构的优化调整,通过二者的结合,得到了两个比较出色的网络模型。


6.2 lnception V4模型


Inception V4模型仅是在InceptionV3模型的基础上由4个卷积分支变为6个卷积分支,但没有使用残差连接。


6.3 Inception-ResNet V2模型


Inception-ResNet V2模型主要是在InceptionV3模型的基础上加入ResNet模型的残差连接,是lnceptionV3模型与ResNet模型的结合。


残差连接在Inception模型中具有提高网络准确率,而且不会增加计算量的作用。


6.4 Inception-ResNetV2模型与lnception V4对比


在网络复杂度相近的情况下,Inception-ResNetV2模型略优于Inception V4模型。


通过将3个带有残差连接的inception模型和一个lnceptionV4模型组合,就可以在lmagelNet上得到3.08%的错误率。

目录
相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
5天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
17 2
|
5天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
16 1
|
1月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
网络协议与IO模型
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
70 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
16天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
1月前
|
安全 NoSQL Java
一文搞懂网络通信的基石✅IO模型与零拷贝
【10月更文挑战第1天】本文深入探讨了网络通信中的IO模型及其优化方法——零拷贝技术。首先介绍了IO模型的概念及五种常见类型:同步阻塞、同步非阻塞、多路复用、信号驱动和异步IO模型。文章详细分析了每种模型的特点和适用场景,特别是多路复用和异步IO在高并发场景中的优势。接着介绍了零拷贝技术,通过DMA直接进行数据传输,避免了多次CPU拷贝,进一步提升了效率。最后总结了各种模型的优缺点,并提供了相关的代码示例和资源链接。
一文搞懂网络通信的基石✅IO模型与零拷贝
|
21天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
开发者
什么是面向网络的IO模型?
【10月更文挑战第6天】什么是面向网络的IO模型?
21 3
|
1月前
|
数据挖掘 开发者
网络IO模型
【10月更文挑战第6天】网络IO模型
38 3

热门文章

最新文章