关于电脑有独立显卡但torch.cuda.is_available()运行出现为False的问题解决方法

简介: 关于电脑有独立显卡但torch.cuda.is_available()运行出现为False的问题解决方法

问题描述:

在安装conda环境后,确定自己电脑有独立显卡mx350,通过命令conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge尝试安装pytorch。但是在运行命令print('GPU存在:',torch.cuda.is_available())输出一直为False,说明未能检查到电脑显卡。


解决方法:

1.首先想到的是会不会是安装pytorch出现了问题,准备将pytorch卸载了重装。但是在重新安装后问题依然不能够解决。

2.在网络上查阅相关文档后,猜测可能是自己CUDA版本不兼容的问题。于是更新了显卡驱动,将CUDA版本从10.2更新到了11.7。再次通过运行命令print('GPU存在:',torch.cuda.is_available()),输出为True,说明能检查到电脑显卡,问题解决。


总结:

针对安装pytorch不能够正常读取显卡的问题,首先不应该考虑的是安装pytorch出问题,如果安装pytorch真的发生了错误,相关的代码肯定是不能够运行的,但是在实际代码中又能够输出结果。

要通过关键词去搜索相关文档,才能够快速的发现问题所在。对显卡的驱动进行更新,让CUDA版本与pytorch安装版本兼容。

目录
相关文章
|
7月前
|
TensorFlow 算法框架/工具 异构计算
Windows部署TensorFlow后识别GPU失败,原因是啥?
Windows部署TensorFlow后识别GPU失败,原因是啥?
|
2月前
|
并行计算 异构计算
卸载原有的cuda,更新cuda
本文提供了一个更新CUDA版本的详细指南,包括如何查看当前CUDA版本、检查可安装的CUDA版本、卸载旧版本CUDA以及安装新版本的CUDA。
1303 2
卸载原有的cuda,更新cuda
|
4月前
|
并行计算 TensorFlow 算法框架/工具
Windows11+CUDA12.0+RTX4090如何配置安装Tensorflow2-GPU环境?
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
566 3
|
7月前
|
机器学习/深度学习 人工智能 并行计算
英伟达禁止其他硬件平台运行 CUDA 软件
【2月更文挑战第16天】英伟达禁止其他硬件平台运行 CUDA 软件
121 12
英伟达禁止其他硬件平台运行 CUDA 软件
|
7月前
|
并行计算 API C++
GPU 硬件与 CUDA 程序开发工具
GPU 硬件与 CUDA 程序开发工具
146 0
|
7月前
|
达摩院 并行计算 异构计算
modelscope调用的模型如何指定在特定gpu上运行?排除使用CUDA_VISIBLE_DEVICES环境变量
由于个人需要,家里有多张卡,但是我只想通过输入device号的方式,在单卡上运行模型。如果设置环境变量的话我的其他服务将会受影响。
|
并行计算 PyTorch Linux
pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统下GPU版PyTorch(CUDA 12.1)快速安装
pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统下GPU版PyTorch(CUDA 12.1)快速安装
7143 0
|
机器学习/深度学习 并行计算 PyTorch
CUDA和显卡驱动以及pytorch版本的对应关系
CUDA和显卡驱动以及pytorch版本的对应关系
3400 0
|
并行计算 PyTorch 算法框架/工具
关于电脑有独立显卡但torch.cuda.is_available()运行出现为False的问题解决方案
关于电脑有独立显卡但torch.cuda.is_available()运行出现为False的问题解决方案
285 0
|
TensorFlow 算法框架/工具 异构计算
TensorFlow 2.10上线:Windows上扩展GPU支持,TF-DF 1.0发布
TensorFlow 2.10上线:Windows上扩展GPU支持,TF-DF 1.0发布
213 0