基于SURF+Affine+Ransac+ICP算法的三维点云室内场景重建matlab仿真

简介: 基于SURF+Affine+Ransac+ICP算法的三维点云室内场景重建matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

c06194cbd88b17a212133f6f2598f555_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c5e5ee938572d93ab7e32c84955305a1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
三维点云室内重建是计算机视觉领域的一个重要研究方向,它可以为现实世界中的建筑空间提供高精度的三维模型。在这个领域中,SURF+AFFINE+RANSAC+ICP算法是一种常用的方法。本文将对这些算法进行详细介绍,并探讨它们在三维点云室内重建中的应用。

一、SURF算法

   SURF(Speeded Up Robust Features)算法是一种用于图像特征匹配的算法,它可以快速且准确地检测出图像中的关键点,并计算出这些关键点的描述符。SURF算法的主要优点是具有高效性和鲁棒性,它可以在不同尺度和旋转角度下对图像进行特征匹配。SURF算法的实现基于高斯差分算子和海森矩阵的计算。在这个过程中,图像会被分成不同的尺度,并通过高斯差分来检测出关键点。然后,通过计算关键点周围像素的海森矩阵来得到关键点的描述符。最后,通过匹配描述符来找到两幅图像之间的对应点。

二、AFFINE算法

   AFFINE(Affine Invariant Feature)算法是一种通过仿射变换来实现图像特征匹配的算法。与SURF算法不同的是,AFFINE算法可以在不同的仿射变换下对图像进行特征匹配,具有更高的鲁棒性。AFFINE算法的基本思想是通过计算二阶矩阵来描述特征点周围的图像结构,然后通过仿射变换来匹配这些特征点。AFFINE算法的实现需要进行以下步骤:首先,用高斯差分算子检测出特征点,并计算出特征点周围的二阶矩阵。然后,通过对二阶矩阵进行特征值分解来计算出特征向量和特征值。最后,通过对特征向量进行仿射变换来匹配特征点。

三、RANSAC算法

   RANSAC(Random Sample Consensus)算法是一种用于估计模型参数的算法,它可以在存在噪声和异常值的情况下得到准确的模型参数。RANSAC算法的基本思想是通过随机抽样来选择一组数据,然后通过估计模型参数来计算出这组数据的误差,如果误差小于一个阈值,就将这组数据视为内点,否则就将它视为外点。通过重复这个过程,最终得到一个能够拟合大部分数据的模型。在三维点云室内重建中,RANSAC算法被用来估计点云中的平面或曲面模型,以便将点云分割成不同的区域。

四、ICP算法

   ICP(Iterative Closest Point)算法是一种用于点云配准的算法,它可以将两个点云之间的对应点找到,并计算出它们之间的变换矩阵,以便将它们对齐。ICP算法的基本思想是通过不断迭代来寻找最优的变换矩阵,最终将两个点云对齐。
   在三维点云室内重建中,ICP算法被用来将多个点云拼接成一个完整的三维模型。基于SURF+AFFINE+RANSAC+ICP算法的三维点云室内重建主要包括以下步骤:

通过激光扫描或RGB-D相机获取室内空间的点云数据。
对点云数据进行预处理,如去除噪声、滤波、降采样等。
使用SURF算法检测出点云中的关键点,并计算出关键点的描述符。
使用AFFINE算法在不同的仿射变换下对关键点进行匹配,并计算出匹配点对之间的变换矩阵。
使用RANSAC算法对匹配点对进行筛选,去除外点,得到一个可靠的匹配结果。
使用ICP算法将多个点云对齐,并拼接成一个完整的三维模型。
对三维模型进行后处理,如纹理映射、光照调整等。
最终生成一个高精度的三维室内模型。
基于SURF+AFFINE+RANSAC+ICP算法的三维点云室内重建具有高效性和鲁棒性,可以在不同的室内环境下得到准确的三维模型。

3.MATLAB核心程序
```for i = 2:num_images

%加载下一个RGB和深度图像
[im2, d_img2] = load_images(i,imglistrgb,imglistdepth);

% SURF
[f2, vp2]     = extractFeatures(rgb2gray(im2), detectSURFFeatures(rgb2gray(im2), 'MetricThreshold', SURF_threshold));
[idxPairs, ~] = matchFeatures(f1, f2);
p1            = double(vp1(idxPairs(:,1),:).Location); % [u1 v1]
p2            = double(vp2(idxPairs(:,2),:).Location); % [u2 v2]

%RGB图像2平面中的投影深度
[d_pos2, img2_pixels] = from_depth_to_RGB(d_img2,cam_params,rows,cols);

%使用NN为每个图像查找对应的3D点
[xyz_1]      = match_2D_to_3D(img1_pixels, p1, d_pos1);
[xyz_2]      = match_2D_to_3D(img2_pixels, p2, d_pos2);

%RANSAC(仿射)
num_SURF_matches = length(xyz_1);
max_inliers      = 0;
SURF_pts         = [xyz_1; xyz_2];                   

%RANSAC环路

........................................................................

    %ICP迭代
    for j = 1 : icp_num_iter

        %将缩小后的图像2的点转换为图像1参考帧
        xyz_pos2_in_1 = H_total*[d_pos2_red; ones(1, size(d_pos2_red, 2))];
        xyz_pos2_in_1(4, :) = [];

        %在图像1参考系中查找缩小图像2的最近点
        xyz_pos1 = match_2D_to_3D(d_pos1, xyz_pos2_in_1', d_pos1);
        %每个点的计算机错误
        e_icp = (xyz_pos1 - xyz_pos2_in_1).*(xyz_pos1 - xyz_pos2_in_1);
        e_icp = sqrt(sum(e_icp));
        %移除距离较远的最近邻居
        xyz_pos1(:, e_icp > e ) = [];
        xyz_pos2_in_1(:, e_icp > e ) = [];
        [R_icp, T_icp] = procrustes(xyz_pos1, xyz_pos2_in_1);
        H_total = [R_icp T_icp; 0 0 0 1]\H_total; 
    end
end
%  H transform  %
aux_H{i,i} = eye(4);
for k = 1:i-1
    aux_H{k,i} = H_total\aux_H{k,i-1};
    aux_H{i,k} = inv(aux_H{k,i});
end 

%Update
img1_pixels = img2_pixels;
d_pos1 = d_pos2;
f1 = f2;
vp1 = vp2;        

end
for i = 1:num_images
transforms{i}.R = aux_H{i, 1}(1:3, 1:3);
transforms{i}.T = aux_H{i, 1}(1:3, 4);
end
end
```

相关文章
|
1月前
|
算法 安全 数据安全/隐私保护
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
|
3月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2月前
|
算法 数据可视化 数据安全/隐私保护
光纤三维布里渊温度和应变分布matlab模拟与仿真
本程序基于MATLAB 2022A,模拟光纤三维布里渊温度和应变分布。通过分析光波与声波在光纤中的相互作用(布里渊散射),实现对温度和应变的高分辨率测量。核心代码计算布里渊强度、频移,并生成三维可视化结果。该技术广泛应用于结构健康监测、地质灾害预警等领域。程序运行后无水印,展示清晰的仿真图像。
|
4月前
|
算法 图形学
三维球体空间中光线反射模拟与三维点云提取matlab仿真
本项目使用MATLAB2022A模拟三维椭球体内光线反射并提取三维点云。通过设置椭球模型作为墙壁,根据几何光学原理计算光线在曲面上的反射路径,记录每次反射点坐标,生成三维点云图。核心代码实现多次反射的循环计算与绘图,并展示反射点的位置变化及其平滑处理结果。最终,通过光线追踪技术模拟真实场景中的光线行为,生成精确的三维点云数据,适用于计算机图形学和光学仿真领域。
241 27
|
6月前
|
存储 数据可视化 数据挖掘
使用Matlab绘制简单的二维与三维图形
【10月更文挑战第3天】本文详细介绍了如何在 Matlab 中绘制简单的二维和三维图形,包括曲线图、柱状图、散点图、网格图、表面图、等高线图、多边形填充图、切片图及矢量场等。文章提供了丰富的代码示例,如使用 `plot`、`bar`、`scatter`、`plot3`、`mesh`、`surf`、`contour` 等函数绘制不同类型图形的方法,并介绍了 `rotate3d`、`comet3` 和 `movie` 等工具实现图形的交互和动画效果。通过这些示例,读者可以轻松掌握 Matlab 的绘图技巧,并应用于数据可视化和分析中。
360 6
|
23天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
16天前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
1月前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
19天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。

热门文章

最新文章

下一篇
oss创建bucket
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等