基于SURF+Affine+Ransac+ICP算法的三维点云室内场景重建matlab仿真

简介: 基于SURF+Affine+Ransac+ICP算法的三维点云室内场景重建matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

c06194cbd88b17a212133f6f2598f555_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c5e5ee938572d93ab7e32c84955305a1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
三维点云室内重建是计算机视觉领域的一个重要研究方向,它可以为现实世界中的建筑空间提供高精度的三维模型。在这个领域中,SURF+AFFINE+RANSAC+ICP算法是一种常用的方法。本文将对这些算法进行详细介绍,并探讨它们在三维点云室内重建中的应用。

一、SURF算法

   SURF(Speeded Up Robust Features)算法是一种用于图像特征匹配的算法,它可以快速且准确地检测出图像中的关键点,并计算出这些关键点的描述符。SURF算法的主要优点是具有高效性和鲁棒性,它可以在不同尺度和旋转角度下对图像进行特征匹配。SURF算法的实现基于高斯差分算子和海森矩阵的计算。在这个过程中,图像会被分成不同的尺度,并通过高斯差分来检测出关键点。然后,通过计算关键点周围像素的海森矩阵来得到关键点的描述符。最后,通过匹配描述符来找到两幅图像之间的对应点。

二、AFFINE算法

   AFFINE(Affine Invariant Feature)算法是一种通过仿射变换来实现图像特征匹配的算法。与SURF算法不同的是,AFFINE算法可以在不同的仿射变换下对图像进行特征匹配,具有更高的鲁棒性。AFFINE算法的基本思想是通过计算二阶矩阵来描述特征点周围的图像结构,然后通过仿射变换来匹配这些特征点。AFFINE算法的实现需要进行以下步骤:首先,用高斯差分算子检测出特征点,并计算出特征点周围的二阶矩阵。然后,通过对二阶矩阵进行特征值分解来计算出特征向量和特征值。最后,通过对特征向量进行仿射变换来匹配特征点。

三、RANSAC算法

   RANSAC(Random Sample Consensus)算法是一种用于估计模型参数的算法,它可以在存在噪声和异常值的情况下得到准确的模型参数。RANSAC算法的基本思想是通过随机抽样来选择一组数据,然后通过估计模型参数来计算出这组数据的误差,如果误差小于一个阈值,就将这组数据视为内点,否则就将它视为外点。通过重复这个过程,最终得到一个能够拟合大部分数据的模型。在三维点云室内重建中,RANSAC算法被用来估计点云中的平面或曲面模型,以便将点云分割成不同的区域。

四、ICP算法

   ICP(Iterative Closest Point)算法是一种用于点云配准的算法,它可以将两个点云之间的对应点找到,并计算出它们之间的变换矩阵,以便将它们对齐。ICP算法的基本思想是通过不断迭代来寻找最优的变换矩阵,最终将两个点云对齐。
   在三维点云室内重建中,ICP算法被用来将多个点云拼接成一个完整的三维模型。基于SURF+AFFINE+RANSAC+ICP算法的三维点云室内重建主要包括以下步骤:

通过激光扫描或RGB-D相机获取室内空间的点云数据。
对点云数据进行预处理,如去除噪声、滤波、降采样等。
使用SURF算法检测出点云中的关键点,并计算出关键点的描述符。
使用AFFINE算法在不同的仿射变换下对关键点进行匹配,并计算出匹配点对之间的变换矩阵。
使用RANSAC算法对匹配点对进行筛选,去除外点,得到一个可靠的匹配结果。
使用ICP算法将多个点云对齐,并拼接成一个完整的三维模型。
对三维模型进行后处理,如纹理映射、光照调整等。
最终生成一个高精度的三维室内模型。
基于SURF+AFFINE+RANSAC+ICP算法的三维点云室内重建具有高效性和鲁棒性,可以在不同的室内环境下得到准确的三维模型。

3.MATLAB核心程序
```for i = 2:num_images

%加载下一个RGB和深度图像
[im2, d_img2] = load_images(i,imglistrgb,imglistdepth);

% SURF
[f2, vp2]     = extractFeatures(rgb2gray(im2), detectSURFFeatures(rgb2gray(im2), 'MetricThreshold', SURF_threshold));
[idxPairs, ~] = matchFeatures(f1, f2);
p1            = double(vp1(idxPairs(:,1),:).Location); % [u1 v1]
p2            = double(vp2(idxPairs(:,2),:).Location); % [u2 v2]

%RGB图像2平面中的投影深度
[d_pos2, img2_pixels] = from_depth_to_RGB(d_img2,cam_params,rows,cols);

%使用NN为每个图像查找对应的3D点
[xyz_1]      = match_2D_to_3D(img1_pixels, p1, d_pos1);
[xyz_2]      = match_2D_to_3D(img2_pixels, p2, d_pos2);

%RANSAC(仿射)
num_SURF_matches = length(xyz_1);
max_inliers      = 0;
SURF_pts         = [xyz_1; xyz_2];                   

%RANSAC环路

........................................................................

    %ICP迭代
    for j = 1 : icp_num_iter

        %将缩小后的图像2的点转换为图像1参考帧
        xyz_pos2_in_1 = H_total*[d_pos2_red; ones(1, size(d_pos2_red, 2))];
        xyz_pos2_in_1(4, :) = [];

        %在图像1参考系中查找缩小图像2的最近点
        xyz_pos1 = match_2D_to_3D(d_pos1, xyz_pos2_in_1', d_pos1);
        %每个点的计算机错误
        e_icp = (xyz_pos1 - xyz_pos2_in_1).*(xyz_pos1 - xyz_pos2_in_1);
        e_icp = sqrt(sum(e_icp));
        %移除距离较远的最近邻居
        xyz_pos1(:, e_icp > e ) = [];
        xyz_pos2_in_1(:, e_icp > e ) = [];
        [R_icp, T_icp] = procrustes(xyz_pos1, xyz_pos2_in_1);
        H_total = [R_icp T_icp; 0 0 0 1]\H_total; 
    end
end
%  H transform  %
aux_H{i,i} = eye(4);
for k = 1:i-1
    aux_H{k,i} = H_total\aux_H{k,i-1};
    aux_H{i,k} = inv(aux_H{k,i});
end 

%Update
img1_pixels = img2_pixels;
d_pos1 = d_pos2;
f1 = f2;
vp1 = vp2;        

end
for i = 1:num_images
transforms{i}.R = aux_H{i, 1}(1:3, 1:3);
transforms{i}.T = aux_H{i, 1}(1:3, 4);
end
end
```

相关文章
|
18天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
1月前
|
存储 数据可视化 数据挖掘
使用Matlab绘制简单的二维与三维图形
【10月更文挑战第3天】本文详细介绍了如何在 Matlab 中绘制简单的二维和三维图形,包括曲线图、柱状图、散点图、网格图、表面图、等高线图、多边形填充图、切片图及矢量场等。文章提供了丰富的代码示例,如使用 `plot`、`bar`、`scatter`、`plot3`、`mesh`、`surf`、`contour` 等函数绘制不同类型图形的方法,并介绍了 `rotate3d`、`comet3` 和 `movie` 等工具实现图形的交互和动画效果。通过这些示例,读者可以轻松掌握 Matlab 的绘图技巧,并应用于数据可视化和分析中。
50 6
|
1月前
|
存储 算法 安全
SM2算法的应用场景有哪些?
【10月更文挑战第5天】SM2算法的应用场景有哪些?
79 1
|
29天前
|
监控 算法 数据挖掘
HyperLogLog算法有哪些应用场景呢
【10月更文挑战第19天】HyperLogLog算法有哪些应用场景呢
16 0
|
2月前
|
算法 计算机视觉 Python
Python并查集大揭秘:让你在算法界呼风唤雨,秒杀一切复杂场景!
在编程与算法的广袤天地中,总有一些工具如同神兵利器,能够助你一臂之力,在复杂的问题前游刃有余。今天,我们就来深入探讨这样一件神器——Python并查集(Union-Find),看看它是如何让你在算法界呼风唤雨,轻松应对各种复杂场景的。
67 2
|
2月前
|
算法 调度
贪心算法基本概念与应用场景
尽管贪心算法在许多问题中都非常有效,但它并不总是会产生最优解。因此,在应用贪心算法前,重要的是先分析问题是否适合采用贪心策略。一些问题可能需要通过动态规划或回溯等其他算法来解决,以找到确切的全局最优解。
100 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
神经网络算法以及应用场景和基本语法
神经网络算法以及应用场景和基本语法
45 0
WK
|
2月前
|
机器学习/深度学习 算法 数据挖掘
PSO算法的应用场景有哪些
粒子群优化算法(PSO)因其实现简单、高效灵活,在众多领域广泛应用。其主要场景包括:神经网络训练、工程设计、电力系统经济调度与配电网络重构、数据挖掘中的聚类与分类、控制工程中的参数整定、机器人路径规划、图像处理、生物信息学及物流配送和交通管理等。PSO能处理复杂优化问题,快速找到全局最优解或近似解,展现出强大的应用潜力。
WK
119 1
|
1月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
3月前
|
存储 SQL 算法
B端算法实践问题之Blink在实时业务场景下的优势如何解决
B端算法实践问题之Blink在实时业务场景下的优势如何解决
47 1
下一篇
无影云桌面