计算机视觉|图像中的信息识别

简介: 计算机视觉|图像中的信息识别

1.为什么需要电脑对图片中的数字和字将进行识别:

在生活中,很多时候需要识别一些图片中的数字和字母,就像很多网站的验证码识别,对于个人来说,单个的此类事件需要的时间和精力很少,可对于一些机构、企业来说,可能就需要重复很多次(例如某些机构需要向某网站提交多次文档、申请多次访问等操作)。这时,大量的此类工作对于人眼的损耗较大,不但需要损耗人力,同时由于眼花和疲劳等原因可能会导致读取出来的信息出现差错,从而降低效率。所以,就需要使用电脑来执行这一操作。


2. python 实现的原理和步骤:

2.1环境搭建:

需要python安装opcvnumpypilpytesseract这几个第三方库;

2.2基本原理介绍:

通过图像的预处理操作后,再将读取出来的数组转换成image形式,然后提取图片的有用信息。

2.3方法步骤简介:

首先是图片的预处理操作,一般顺序为先进行图像的二值化,之后再对图片进行数字形态学运算(主要是开运算),由于pytesseract内置函数识别的图片是image形式而不是opencv中的多维数组形式,所以在识别之前需要先使用pil中的image函数将图片格式进行转换,最后再通过pytesseracr中的函数进行识别。

大致简单代码如下:

import  cv2  as  cv

 import  numpy  as  np

 from  PIL  import  Image

 import  pytesseract  as  tess

#构造函数

 def recognize_text():

#灰度化图像:

       gray  = cv. cvtColor(src, Cv. COLOR_BGR2GRAY)

#二值化图像:

       ret, binary  = cv. threshold(gray, 0 ,255, cv. THRESH_BINARY_INV  | cv. THRESH_OTSU)

#开运算:

       kernel = cv. getstructuringelement(cv. MORPH_RECT,  (1,2))#使用1*2的面积元素

       bin1 = cv. morphologyEx(binary,  cv. MORPH_OPEN, kernel)

       kernel = cv. getstructuringelement(cv. MORPH_RECT,  (2,1))#使用2*1的面积元素

       open_out  =  cv. morphologyex(bin1, cv. MORPH_OPEN, kernel

     

       cv.bitwise_not(open_out, open_out)#将图片背景转换为白色

#转换图片格式

       textImage  =  Image. fromarray(open_out)

#读取信息

       text  =  tess. image_to_string(textImage)

       printtext

 

  sre cv. imread("图像路径")

  cv. namedWindow("input image". WINDOW_AUTOSIZE)

  cv. imshow("input image", sre)

#调用函数

recognize_text(src)

cv.waitKey(0)

 cv.destroyAllWindows()

 


3.总结:

上述步骤和代码只是一个基本思路和例子,具体步骤代码还需要结合图片的具体情况,有的图片可能不需要开运算就可以直接进行后面的操作,也有一些图片需要进行多次开运算的处理,所以还需要结合实际情况进行调整后使用。




目录
相关文章
|
7月前
|
机器学习/深度学习 监控 算法
计算机视觉实战项目(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别)
计算机视觉实战项目(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别)
|
7月前
|
机器学习/深度学习 算法 计算机视觉
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A路径规划+单目测距与测速+行人车辆计数等)
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A路径规划+单目测距与测速+行人车辆计数等)
136 2
|
7月前
|
机器学习/深度学习 算法 计算机视觉
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
|
3月前
|
机器学习/深度学习 编解码 自动驾驶
计算机视觉之图像到图像的翻译
图像到图像的翻译(Image-to-Image Translation)是指将一种图像从一种表示转换为另一种表示的过程。该任务的目标是在保证图像语义信息的前提下,将图像风格、颜色或其他视觉特征进行转换。该技术在计算机视觉领域具有广泛应用,例如图像风格迁移、图像修复、图像增强、超分辨率、语义分割等。
89 4
|
7月前
|
机器学习/深度学习 编解码 算法
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)-2
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)-2
|
7月前
|
机器学习/深度学习 监控 算法
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)-1
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)-1
|
7月前
|
编解码 边缘计算 自然语言处理
2024年5月计算机视觉论文推荐:包括扩散模型、视觉语言模型、图像编辑和生成、视频处理和生成以及图像识别等各个主题
五月发布的计算机视觉领域重要论文涵盖了扩散模型、视觉语言模型、图像生成与编辑及目标检测。亮点包括:1) Dual3D提出双模式推理策略,实现高效文本到3D图像生成;2) CAT3D利用多视图扩散模型创建3D场景,仅需少量图像;3) Hunyuan-DiT是多分辨率的中文理解扩散Transformer,可用于多模态对话和图像生成;4) 通过潜在扩散模型从EEG数据重建自然主义音乐,展示复杂音频重建潜力。此外,还有关于视觉语言模型和图像编辑的创新工作,如BlobGEN用于合成具有控制性的图像。
291 3
|
6月前
|
机器学习/深度学习 算法 计算机视觉
计算机视觉是一门研究如何使计算机“看”的技术,其目标是让计算机能够像人类视觉一样理解和解释视觉信息。
计算机视觉是一门研究如何使计算机“看”的技术,其目标是让计算机能够像人类视觉一样理解和解释视觉信息。
|
5月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
6月前
|
算法 计算机视觉 Python
openCV 3计算机视觉 Python语言实现 笔记 第三章 使用OpenCV 3处理图像
openCV 3计算机视觉 Python语言实现 笔记 第三章 使用OpenCV 3处理图像

热门文章

最新文章