Nomogram(诺莫图) | Logistic、Cox生存分析结果可视化

简介: Nomogram(诺莫图) | Logistic、Cox生存分析结果可视化

本文首发于“生信补给站”公众号  https://mp.weixin.qq.com/s/BWpy3F-nEKXCdVXmY3GYZg


Nomogram,也被称为诺莫图或者列线图,在医学领域的期刊出现频率越来愈多,常用于评估肿瘤学和医学的预后情况,可将Logistic回归或Cox回归的结果进行可视化呈现。

数据准备

    使用TCGA-LIHC队列的临床数据,简单处理后进行示例分析:

## 载入R包
library(rms)
library(survival)
## 读取LIHC数据
LIHC <- read.csv("TCGA-LIHC-nomogram.csv",header=TRUE)
head(LIHC)

绘制nomogram图


1 打包数据

关键步骤:按照nomogram要求“打包”数据
#可以输入??datadist查看详细说明
dd=datadist(LIHC)
options(datadist="dd")
2 构建logist模型,绘制诺莫图
## 构建logist模型,绘制诺莫图
f1 <- lrm(status ~ age + gender + grade , data =  LIHC)
nom <- nomogram(f1, fun=plogis, lp=F, funlabel="Risk")
plot(nom)

3 构建COX模型,绘制诺莫图

A :COX回归中位生存时间的Nomogram

## 构建COX比例风险模型
f2 <- psm(Surv(time,status) ~ age+gender+grade,data =  LIHC, dist='lognormal')
med <- Quantile(f2) # 计算中位生存时间
surv <- Survival(f2) # 构建生存概率函数
## 绘制COX回归中位生存时间的Nomogram图
nom <- nomogram(f2, fun=function(x) med(lp=x),funlabel="Median Survival Time")
plot(nom)

简单介绍下使用,比如某患者年龄为50岁,那就在列线图年龄为50岁的地方向上画一条垂直线,即可得到其对应的得分(Points);男性,则在男性的地方画一条垂直线,以此类推,找出每个变量状态下对应的得分,相加得到总得分。

最后将患者的总得分(Total Points)再向下画一条垂直线,就可以知道该患者对应的中位生存时间。

下面例子同,可以知道未来1年、5年的生存率,当然也可以是其他时间节点。

## LIHC数据的time是以”天“为单位,此处绘制1年,5年的生存概率
nom <- nomogram(f2, fun=list(function(x) surv(365, x),
                            function(x) surv(1825, x),
                            function(x) med(lp=x)),
                            funlabel=c("1-year Survival Probability", "5-year Survival Probability","Median Survival Time"))
plot(nom, xfrac=.2)

B:绘制COX回归生存概率的Nomogram图


/

当然也可以计算其他时间节点的生存率,同样加到list中即可。


使用相对风险的指标(OR、HR)等统计之余,可以结合列线图展示,能够起到预测生存概率的作用,也会使预测模型的结果更直观、易懂。


相关文章
|
6月前
|
机器学习/深度学习 图计算
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据(2)
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据(2)
|
6月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
|
6月前
|
数据挖掘
R语言临床预测模型:分层构建COX生存回归模型STRATIFIED COX MODEL、KM生存曲线、PH假设检验
R语言临床预测模型:分层构建COX生存回归模型STRATIFIED COX MODEL、KM生存曲线、PH假设检验
|
6月前
|
机器学习/深度学习
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据(1)
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据
|
6月前
|
算法
R语言和QuantLib中Nelson-Siegel模型收益曲线建模分析
R语言和QuantLib中Nelson-Siegel模型收益曲线建模分析
|
6月前
R语言Lasso回归模型变量选择和糖尿病发展预测模型
R语言Lasso回归模型变量选择和糖尿病发展预测模型
|
6月前
|
数据可视化
R语言ARMA GARCH COPULA模型拟合股票收益率时间序列和模拟可视化
R语言ARMA GARCH COPULA模型拟合股票收益率时间序列和模拟可视化
R语言ARMA GARCH COPULA模型拟合股票收益率时间序列和模拟可视化
|
6月前
|
机器学习/深度学习 算法 Serverless
数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型
数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型
|
6月前
|
机器学习/深度学习 数据可视化 算法
数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
|
6月前
|
机器学习/深度学习 图计算
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据