什么是跳跃表,跳跃表是一种有序的数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。
跳跃表定义
对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很高,是 O(n)
如果我们想要提高其查找效率,可以考虑在链表上建索引的方式。每两个结点提取一个结点到上一级,我们把抽出来的那一级叫作索引:
如果有了一个索引的层级,那么只需要从索引层级上逐级向下定位:
在数据量特别大的时候效率有明显提高,实际上就是折半查找。像这种链表加多级索引的结构,就是跳跃表!
跳跃表数据结构
Redis使用跳跃表作为ZSET的底层实现之一。如果一个ZSET包含的元素数量比较多,又或者ZSET中元素的成员是比较长的字符串时, Redis就会使用跳跃表来作为有序集合健的底层实现。
- 跳跃表在链表的基础上增加了多级索引以提升查找的效率,是一个空间换时间的方案,必然会带来一个问题——索引是占内存的。原始链表中存储的有可能是很大的对象,而索引结点只需要存储关键值值和几个指针,并不需要存储对象,因此当节点本身比较大或者元素数量比较多的时候,其优势必然会被放大,而缺点则可以忽略
跳跃表支持**平均O(logN)、最坏O(N)**复杂度的节点查找,还可以通过顺序性操作来批量处理节点,Redis的跳跃表由zskiplistNode和skiplist两个结构定义,其中 zskiplistNode结构用于表示跳跃表节点,而 zskiplist结构则用于保存跳跃表节点的相关信息,比如节点的数量,以及指向表头节点和表尾节点的指针等等
跳跃表节点
跳跃表节点的数据结构定义如下
/* ZSETs use a specialized version of Skiplists */ typedef struct zskiplistNode { robj *obj; /*成员对象*/ double score; /*分值*/ struct zskiplistNode *backward; /*后退指针*/ struct zskiplistLevel { /*层*/ struct zskiplistNode *forward; /*前进指针*/ unsigned int span; /*跨度*/ } level[]; } zskiplistNode;
各个属性的含义如下:
- 层(level):节点中用L1、L2、L3等字样标记节点的各个层,L1代表第一层,L2代表第二层,以此类推。每个层都带有两个属性:前进指针和跨度。前进指针用于访问位于表尾方向的其他节点,而跨度则记录了前进指针所指向节点和当前节点的距离。在上面的图片中,连线上带有数字的箭头就代表前进指针,而那个数字就是跨度。当程序从表头向表尾进行遍历时,访问会沿着层的前进指针进行。一般来说,层的数量越多,访问其他节点的速度就越快,每次创建一个新跳跃表节点的时候,程序都根据**幂次定律(power law,越大的数出现的概率越小)**随机生成一个介于1和32之间的值作为level数组的大小,这个大小就是层的“高度”
- 后退(backward)指针:节点中用BW字样标记节点的后退指针,它指向位于当前节点的前一个节点。后退指针在程序从表尾向表头遍历时使用,因为每个节点只有一个后退指针,所以每次只能后退至前一个节点
- 分值(score):各个节点中的1.0、2.0和3.0是节点所保存的分值。分值是一个double类型的浮点数,在跳跃表中,节点按各自所保存的分值从小到大排列,有序的。节,跳跃表中的所有节点都按分值从小到大来排序
- 成员对象(obj):各个节点中的o1、o2和o3是节点所保存的成员对象,节点的成员对象(obj属性)是一个指针,它指向一个字符串对象,而字符串对象则保存着一个SDS值
那么跳跃表是如何迭代寻找分值对象呢?使用前进指针就能实现
- 1)迭代程序首先访问跳跃表的第一个节点(表头),然后从第四层的前进指针移动到表中的第二个节点
- 2)在第二个节点时,程序沿着第二层的前进指针移动到表中的第三个节点。
- 3)在第三个节点时,程序同样沿着第二层的前进指针移动到表中的第四个节点。
- 4)当程序再次沿着第四个节点的前进指针移动时,它碰到一个NULL,程序知道这时已经到达了跳跃表的表尾,于是结束这次遍历
那么如何计算目标节点在跳跃表中的排位呢?在查找某个节点的过程中,将沿途访问过的所有层的跨度累计起来,得到的结果就是,实际上就是节点的顺序值。
需要注意:在同一个跳跃表中,各个节点保存的成员对象必须是唯一的,但是多个节点保存的分值却可以是相同的:分值相同的节点将按照成员对象在字典序中的大小来进行排序,成员对象较小的节点会排在前面(靠近表头的方向),而成员对象较大的节点则会排在后面(靠近表尾的方向)
跳跃表结构
跳跃表结构的构建代码如下:
typedef struct zskiplist { struct zskiplistNode *header, *tail; //header指向跳跃表的表头节点,tail指向跳跃表的表尾节点 unsigned long length; //记录跳跃表的长度,也即是,跳跃表目前包含节点的数量(表头节点不计算在内) int level; //记录目前跳跃表内,层数最大的那个节点的层数(表头节点的层数不计算在内) } zskiplist;
skiplist结构包含以下属性:
- header,指向跳跃表的表头节点,通过这个指针程序定位表头节点的时间复杂度就为O(1)
- tail,指向跳跃表的表尾节点,通过这个指针程序定位表尾节点的时间复杂度就为O(1)
- level,记录目前跳跃表内,层数最大的那个节点的层数,通过这个属性可以在O(1)的时间复杂度内获取层高最好的节点的层数。可以理解为深度,表头节点的层数不计算在内
- length,记录跳跃表的长度,也即是,跳跃表目前包含节点的数量(表头节点不计算在内),通过这个属性,程序可以在O(1)的时间复杂度内返回跳跃表的长度。可以理解为长度,表头节点的层高并不计算在内
核心部分就是header了,之后挂了一串跳跃表节点,可以看到Redis的数据结构,无论是链表还是哈希表,都是采用链表的方式实现的。而链表的插入和删除动作都是O(1),单纯指“插入”这个操作,而不包含找到插入的位置。链表插入只要修改元素的地址。而数组需要将后面所有元素都修改位置,如果连续空间不够还要查找空间,并将整个数组重新存储。所以对比“插入”操作,链表是O(1),数组是O(n)
跳跃表操作API
可以看到大部分操作为O(logN):