1064 Complete Binary Search Tree
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10 1 2 3 4 5 6 7 8 9 0 • 1 • 2
Sample Output:
6 3 8 1 5 7 9 0 2 4
题意
二叉搜索树 (BST) 递归定义为具有以下属性的二叉树:
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值
若它的右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值
它的左、右子树也分别为二叉搜索树
完全二叉树 (CBT) 定义为除最深层外的其他层的结点数都达到最大个数,最深层的所有结点都连续集中在最左边的二叉树。
现在,给定 N NN 个不同非负整数,表示 N NN 个结点的权值,用这 N NN 个结点可以构成唯一的完全二叉搜索树。
请你输出该完全二叉搜索树的层序遍历。
思路
我们可以利用完全二叉树的性质,用一个一维数组来存储,如果当前结点第下标为 u (假设下标从 1 开始),则满足以下条件:
该结点的左孩子下标为 u * 2
该结点的右孩子下标为 u * 2 + 1
由于题目给定的是结点的值,所以我们可以通过对结点的值进行排序,从而得到中序遍历的数组,因为二叉搜索树的中序遍历结果一定是有序的。
然后通过模拟中序遍历并利用上述完全二叉树的性质,将每一个值放到对应的位置上。
因为存储完全二叉树结点值的数组和其层序遍历的结果一样,直接从前往后输出该数组即可。
代码
#include<bits/stdc++.h> using namespace std; const int N = 1010; int n; int w[N], tr[N]; //中序遍历 void dfs(int u, int& k) { if (u * 2 <= n) dfs(u * 2, k); tr[u] = w[k++]; if (u * 2 + 1 <= n) dfs(u * 2 + 1, k); } int main() { cin >> n; for (int i = 0; i < n; i++) cin >> w[i]; sort(w, w + n); //得到中序遍历数组 int k = 0; dfs(1, k); //中序遍历的同时生成完全二叉树 //输出结果 cout << tr[1]; for (int i = 2; i <= n; i++) cout << " " << tr[i]; cout << endl; return 0; }