一、.Java反射机制概述
Reflection(反射)是被视为动态语言的关键,反射机制允许程序在执行期借助于Reflection API取得任何类的内部信息,并能直接操作任意对象的内部属性及方法。
加载完类之后,在堆内存的方法区中就产生了一个Class类型的对象(一个类只有一个Class对象),这个对象就包含了完整的类的结构信息。我们可以通过这个对象看到类的结构。这个对象就像一面镜子,透过这个镜子看 到类的结构,所以,我们形象的称之为:反射。
1) 动态语言 vs 静态语言
①动态语言
是一类在运行时可以改变其结构的语言:例如新的函数、对象、甚至代码可以被引进,已有的函数可以被删除或是其他结构上的变化。通俗点说就是 在运 行时代码可以根据某些条件改变自身结构 。
主要动态语言: Object-C 、 C# 、 JavaScript 、 PHP 、 Python 、 Erlang 。
②静态语言
与动态语言相对应的, 运行时 结构不可变 的语言就是静态语言。如 Java 、 C 、 C++。
Java 不是动态语言,但 Java 可以称之为 “准动态语言” 。即 Java 有一定的动态性,我们可以利用反射机制、字节码操作获得类似动态语言的特性。 Java的动态性让编程的时候更加灵活!
2)Java 反射机制研究及应用
Java反射机制提供的功能
在运行时判断任意一个对象所属的类
在运行时构造任意一个类的对象
在运行时判断任意一个类所具有的成员变量和方法
在运行时获取泛型信息
在运行时调用任意一个对象的成员变量和方法
在运行时处理注解
生成动态代理
3)反射相关的主要 API
java.lang.Class:代表一个类
java.lang.reflect.Method:代表类的方法
java.lang.reflect.Field:代表类的成员变量
java.lang.reflect.Constructor:代表类的构造器
二、理解Class类并获取Class的实例
1)Class 类
在Object类中定义了以下的方法,此方法将被所有子类继承: public final Class getClass() 以上的方法返回值的类型是一个Class类, 此类是Java反射的源头,实际上所谓反射从程序的运行结果来看也很好理解,即: 可以通过对象反射求出类的名称。
对象照镜子后可以得到的信息:某个类的属性、方法和构造器、某个类到底实现了哪些接口。对于每个类而言,JRE 都为其保留一个不变的 Class 类型的对象。一个 Class 对象包含了特定某个结构(class/interface/enum/annotation/primitive type/void/[])的有关信息。
Class本身也是一个类
Class 对象只能由系统建立对象
一个加载的类在 JVM 中只会有一个Class实例
一个Class对象对应的是一个加载到JVM中的一个.class文件
每个类的实例都会记得自己是由哪个 Class 实例所生成
通过Class可以完整地得到一个类中的所有被加载的结构
Class类是Reflection的根源,针对任何你想动态加载、运行的类,唯有先获得相应Class对象
2)Class类的常用方法
3)反射的应用举例
• String str = "test4.Person";
• Class clazz = Class.forName(str);
• Object obj = clazz.newInstance();
• Field field = clazz.getField("name");
• field.set(obj, "Peter");
• Object name = field.get(obj);
• System.out.println(name);
4)获取Class类的实例(四种方法)
①前提:若已知具体的类,通过类的class属性获取,该方法最为安全可靠, 程序性能最高 实例:Class clazz = String.class; ②前提:已知某个类的实例,调用该实例的getClass()方法获取Class对象 实例:Class clazz = p1.getClass(); ③前提:已知一个类的全类名,且该类在类路径下,可通过Class类的静态方法forName()获取, 可能抛出ClassNotFoundException 实例:Class clazz = Class.forName(“java.lang.String”); ④其他方式(不做要求) ClassLoader cl = this.getClass().getClassLoader(); Class clazz4 = cl.loadClass(“类的全类名”);
测试代码:
@Test public void test3() throws ClassNotFoundException { //方式一:调用运行类的属性:.class Class clazz1 = Person.class; System.out.println(clazz1); //方式二:通过运行类得的对象,调用getClass() Person p1 = new Person(); Class clazz2 = p1.getClass(); System.out.println(clazz2); //方式三:调用Class的静态方法:forName(String classPath) Class clazz3 = Class.forName("com.atguigu.java.Person"); //Class clazz3 = Class.forName("java.lang.String"); System.out.println(clazz3); System.out.println(clazz1 == clazz2); System.out.println(clazz1 == clazz3); //方式四:使用类的加载器:ClassLoader ClassLoader classLoader = ReflectionTest.class.getClassLoader(); Class clazz4 = classLoader.loadClass("com.atguigu.java.Person"); System.out.println(clazz4); System.out.println(clazz1 == clazz4); }
运行结果:
5)哪些类型可以有Class对象?
(1) class : 外部类,成员( 成员内部类,静态内部类 ) ,局部内部类,匿名内部类
(2) interface :接口
(3) [] :数组
(4) enum :枚举
(5) annotation :注解 @interface
(6) primitive type :基本数据类型
(7) void
三、类的加载与ClassLoader的理解
1)类的加载过程
当程序主动使用某个类时,如果该类还未被加载到内存中,则系统会通过如下三个步骤来对该类进行初始化。
加载:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问入口(即引用地址)。所有需要访问和使用类数据只能通过这个Class对象。这个加载的过程需要类加载器参与。
链接:将Java类的二进制代码合并到JVM的运行状态之中的过程。
验证:确保加载的类信息符合JVM规范,例如:以cafe开头,没有安全方面的问题
准备:正式为类变量(static)分配内存并设置类变量默认初始值的阶段,这些内存都将在方法区中进行分配。
解析:虚拟机常量池内的符号引用(常量名)替换为直接引用(地址)的过程。
初始化:
执行类构造器<clinit>()方法的过程。类构造器<clinit>()方法是由编译期自动收集类中所有类变量的赋值动作和静态代码块中的语句合并产生的。(类构造器是构造类信息的,不是构造该类对象的构造器)。
当初始化一个类的时候,如果发现其父类还没有进行初始化,则需要先触发其父类的初始化。
虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确加锁和同步。
2)类初始化的时间
类的主动引用(一定会发生类的初始化)
当虚拟机启动,先初始化main方法所在的类new一个类的对象
调用类的静态成员(除了final常量)和静态方法
使用java.lang.reflect包的方法对类进行反射调用
当初始化一个类,如果其父类没有被初始化,则先会初始化它的父类
类的被动引用(不会发生类的初始化)
当访问一个静态域时,只有真正声明这个域的类才会被初始化
当通过子类引用父类的静态变量,不会导致子类初始化
通过数组定义类引用,不会触发此类的初始化
引用常量不会触发此类的初始化(常量在链接阶段就存入调用类的常量池中了)
测试代码:
public class ClassLoadingTest { public static void main(String[] args) { // 主动引用:一定会导致A和Father的初始化 // A a = new A(); // System.out.println(A.m); // Class.forName("com.atguigu.java2.A"); // 被动引用 A[] array = new A[5];//不会导致A和Father的 初始化 // System.out.println(A.b);//只会初始化 Father // System.out.println(A.M);//不会导致A和 Father的初始化 } static { System.out.println("main所在的类"); } } class Father { static int b = 2; static { System.out.println("父类被加载"); } } class A extends Father { static { System.out.println("子类被加载"); m = 300; } static int m = 100; static final int M = 1; }
类加载器的作用:
类加载的作用:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后在堆中生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问入口。
类缓存:标准的JavaSE类加载器可以按要求查找类,但一旦某个类被加载到类加载器中,它将维持加载(缓存)一段时间。不过JVM垃圾回收机制可以回收这些Class对象。
3)ClassLoader类
类加载器作用是用来把类 (class) 装载进内存的。 JVM 规范定义了如下三种类型的类的加载器。
代码测试:
@Test public void test1() throws ClassNotFoundException { //对于自定义类,使用系统类加载器进行加载 ClassLoader classLoader = ClassLoaderTest.class.getClassLoader(); System.out.println(classLoader); //调用系统类加载器的getParent():获取扩展类的加载器 ClassLoader classLoader1 = classLoader.getParent(); System.out.println(classLoader1); //调用扩展类加载器的getParent():无法获取引导类加载器 //引导类加载器主要负责加载java的核心类库,无法加载自定义类的 ClassLoader classLoader2 = classLoader1.getParent(); System.out.println(classLoader2);//null ClassLoader classLoader3 = String.class.getClassLoader(); System.out.println(classLoader3);//null }