基于R语言绘制Network几种方式

简介: 平时对于网络图的绘制,一般我们都会在R中生成边和点列表后导入到Cytoscape和Gephi等的本地工具软件当中,而R语言中也自带有不少优秀的包也可精美的可视化我们的数据,所有函数也比较简单,有时间的不妨学习一下~~

加载R包

## 安装加载数据
if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/navdata")
install.packages(
  c("tidyverse", "igraph", "tidygraph", "ggraph")
)
library(pacman)
p_load("navdata","tidyverse", "igraph", "tidygraph", "ggraph")
  • navdata:需要用到此包中的示例数据集phone.call
  • tidyverse:数据进行操作转换
  • igraph,tidygraph和ggraph:用于网络可视化

查看示例数据

文件包含三列数据:来源地、目的地、及call数量

library("navdata")
data("phone.call")
head(phone.call, 3)
## # A tibble: 3 x 3
##    source destination n.call
##              
## 1  France     Germany      9
## 2 Belgium      France      4
## 3  France       Spain      3

我们都知道可视化网络,需要准备两个数据文件:

  • 点列表:包含点标签和其它的点属性
  • 边列表:包含点与点之间的关系,及其它属性

接下来基于此数据集准备点和边列表文件

点列表

  • 去重source 和 destination列,然后将向量合并一列命名为label,添加索引值

#  来源地去重
sources <- phone.call %>%
  distinct(source) %>%
  rename(label = source)
#目的地去重
destinations <- phone.call %>%
  distinct(destination) %>%
  rename(label = destination)
## 合并数据并添加一列索引
nodes <- full_join(sources, destinations, by = "label") 
nodes <- nodes %>%
  mutate(id = 1:nrow(nodes)) %>%
  select(id, everything())
head(nodes, 3)
## # A tibble: 3 x 2
##      id   label
##      
## 1     1  France
## 2     2 Belgium
## 3     3 Germany

创建边列表

  • 其实原始数据已具备边列表的格式,重命名 n.call为weight,然后通过left_join函数将点列表中id数据和边列表中进行合并

# Rename the n.call column to weight
phone.call <- phone.call %>%
  rename(weight = n.call)
# (a) Join nodes id for source column
edges <- phone.call %>% 
  left_join(nodes, by = c("source" = "label")) %>% 
  rename(from = id)
# (b) Join nodes id for destination column
edges <- edges %>% 
  left_join(nodes, by = c("destination" = "label")) %>% 
  rename(to = id)
# (c) Select/keep only the columns from and to
edges <- select(edges, from, to, weight)
head(edges, 3)
## # A tibble: 3 x 3
##    from    to weight
##      
## 1     1     3      9
## 2     2     1      4
## 3     1     8      3

可视化网络

至此,简单的边和点列表已经准备好了,我们接下来通过几个R包来可视化下

igraph

这是R中绘制网络图的一个基本R包,这里主要用到graph_from_data_fram()函数。更多关于此包绘图的细节可参考这个帖子Network Analysis and Visualization with R and igraph (kateto.net),介绍的十分详细。

library(igraph)
net.igraph <- graph_from_data_frame(
  d = edges, vertices = nodes, 
  directed = TRUE
  )
  ## d 边列表,vertices 点列表,directer:有向或者无向
  ## network
  set.seed(123)
plot(net.igraph, edge.arrow.size = 0.2,
     layout = layout_with_graphopt)

385ca4ef8704bcc1ca6af04de48e9ff.png

tidygraph和ggraph

这两个R包目前相对比较流行,可以对network数据进行操作和可视化

  1. 首先用tidygraph创建networ对象

library(tidygraph)
net.tidy <- tbl_graph(
  nodes = nodes, edges = edges, directed = TRUE
  )
  1. 使用ggraph可视化网络

library(ggraph)
ggraph(net.tidy, layout = "graphopt") + 
  geom_node_point(col = 'gold',size = 2) + # 点信息
  geom_edge_link(aes(width = weight), alpha = 0.8) +  # 边信息
  scale_edge_width(range = c(0.2, 2)) + # 控制粗细
  geom_node_text(aes(label = label), repel = TRUE) + # 增加节点的标签,reple避免节点重叠
  labs(edge_width = "phone.call") + # 图例标签
  theme_graph()

58c50ff9da1d996566f08d9d8634632.png

更多图形样式

  • 弧形图

# Arc diagram
ggraph(net.tidy, layout = "linear") + 
  geom_edge_arc(aes(width = weight), alpha = 0.8) + 
  scale_edge_width(range = c(0.2, 2)) +
  geom_node_text(aes(label = label), repel = TRUE) +
  labs(edge_width = "Number of calls") +
  theme_graph()+
  theme(legend.position = "top")

582c236f0209e41c1b968df030ade44.png

  • 弦图

# Coord diagram, circular
ggraph(net.tidy, layout = "linear", circular = TRUE) + 
  geom_edge_arc(aes(width = weight), alpha = 0.8) + 
  scale_edge_width(range = c(0.2, 2)) +
  geom_node_text(aes(label = label), repel = TRUE) +
  labs(edge_width = "Number of calls") +
  theme_graph()+
  theme(legend.position = "top")

ddc70c10adcd7e91d27c2945e23b443.png

  • image
  • treemap、dendrogram等等

24eaabe0096be3e2b25927ca2f4d2b4.png

Treemap

948aa50e18bad7eb67d912bca655fa9.png

dendrogram

ggraph包还有更多好玩的样式,详情参考:https://www.data-imaginist.com/2017/ggraph-introduction-layouts/, 根据个人的数据去选择最合适的展现形式即可。

visNetwor和network3D

这两款R包都是基于浏览器的JavaScript可视化库,用于交互式的展示图形,这里我们还用到刚才的示例数据来展示。

加载数据

library(tidyverse)
library("navdata")
data("phone.call2")
nodes <- phone.call2$nodes
edges <- phone.call2$edges
## 刚才数据集是phone.call,phone.call2可以直接提取点和边列表
##注意:该包中节点和边缘列表中的ID应该是从0开始的数字值。我们直接减1 即可
nodes_d3 <- mutate(nodes, id = id - 1)
edges_d3 <- mutate(edges, from = from - 1, to = to - 1)

network3D

常用来快速创建交互式桑基图、和其它种类的网络图等,核心的函数即forceNetwork()

library(networkD3)
forceNetwork(
  Links = edges_d3, Nodes = nodes_d3,bounded = T,
  Source = "from", Target = "to",      # so the network is directed.
  NodeID = "label", Group = "id", Value = "weight", 
  width = 700, height=500,legend = T,
  colourScale = JS("d3.scaleOrdinal(d3.schemeCategory10);"), ## 颜色模板
  opacity = 1, fontSize = 18, zoom = TRUE, opacityNoHover = 1  ## 显示标签信息
)
## 如果想自定义颜色新修改,直接括号中改为16进制颜色即可
 colourScale = JS("d3.scaleOrdinal([`#383867`, `#584c77`, `#e1eff7`,`#dd2c29`]);"),

261cf18cc611c757ee049da1d43a26c.png

制作桑基图

sankeyNetwork(
  Links = edges_d3, Nodes = nodes_d3, 
  Source = "from", Target = "to", 
  NodeID = "label", Value = "weight", 
  fontSize = 16, unit = "Letter(s)")

c4186ed7b063756807ab9fb357e8865.png

visNetwork

该包绘制更加方便,

library(visNetwork)
visNetwork(nodes, edges) %>%
  visLayout(randomSeed = 12)

3a571960ecc54724d891209d46b5384.png

我们也可以为网络中的边添加方向,用到 layout_with_fr 方式

visNetwork(nodes, edges) %>% 
  visIgraphLayout(layout = "layout_with_fr") %>% 
  visEdges(arrows = "middle") %>%
  visLayout(randomSeed = 1234)

0e677a0a56150cf046f7aca01047419.png


相关文章
|
6月前
|
数据可视化 Python
python数据可视化 - matplotlib专题:带数据标签的双batch的Bar图绘制示例
python数据可视化 - matplotlib专题:带数据标签的双batch的Bar图绘制示例
77 0
|
3月前
|
数据可视化
R语言自定义图形:ggplot2中的主题与标签设置
【8月更文挑战第30天】`ggplot2`作为R语言中功能强大的绘图包,其自定义能力让数据可视化变得更加灵活和多样。通过合理使用`theme()`函数和`labs()`函数,以及`geom_text()`和`geom_label()`等几何对象,我们可以轻松创建出既美观又富有表达力的图形。希望本文的介绍能够帮助你更好地掌握`ggplot2`中的主题与标签设置技巧。
|
4月前
|
数据可视化 Linux 数据格式
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
|
6月前
|
数据可视化 算法 数据挖掘
R语言使用K-Means聚类可视化WiFi访问
R语言使用K-Means聚类可视化WiFi访问
|
数据可视化 Python
【100天精通Python】Day64:Python可视化_Matplotlib绘制误差线图、填充图、堆叠面积图,示例+代码
【100天精通Python】Day64:Python可视化_Matplotlib绘制误差线图、填充图、堆叠面积图,示例+代码
259 0
|
6月前
|
机器学习/深度学习 人工智能 文字识别
【学习打卡03】可解释机器学习笔记之CAM类激活热力图
【学习打卡03】可解释机器学习笔记之CAM类激活热力图
|
存储 Go
速绘丨GO富集气泡图绘制方法,利用R语言ggplot2包快速绘制,完整脚本可重复绘图
速绘丨GO富集气泡图绘制方法,利用R语言ggplot2包快速绘制,完整脚本可重复绘图
|
计算机视觉 C++
【OpenCV • c++】基础图像的绘制
【OpenCV • c++】基础图像的绘制
179 1
|
开发框架 数据可视化 .NET
R语言绘图001-基础参数
R语言绘图001-基础参数
167 0
|
数据可视化
利用 ggplot2 包绘制高级版本棒棒图
利用 ggplot2 包绘制高级版本棒棒图
156 0