一个让AI“更聪明”的新尝试

简介: 一个让AI“更聪明”的新尝试


如何将人类知识注入预训练模型,让知识和数据有机融合,一直是AI研究中的难题。


近日,达摩院首次利用半监督学习将标注的人类知识注入预训练对话模型,在MultiWOZ2.1等三个国际主流对话数据集中均实现了最佳效果,提升幅度明显,为知识和数据融合探索出新路径。


达摩院新模型在三大国际数据集上的表现


01 什么是预训练模型


预训练模型是AI近年来重要的发展趋势,其打破了传统模型通用性差的制约,可做到举一反三,解决多种任务。


常见的预训练模型有预训练语言模型,可以出题让AI写高考作文;预训练多模态模型,可以给到文字让AI生成图片。


预训练对话模型还需要考虑对话过程中的策略,如:对话轮次、上下文情境、对话人员的角色等,以便理解对方意图并做出恰当回复。


打个比方,在凌晨时分提问AI“明天天气如何”,AI根据理解作出的回答通常是当日天亮后的天气,而非客观事实上的“明天”。


对话特有的属性总结


经过快速发展,业内已成功构建出万亿参数的大模型。但不少研究者认为,数据量只是一方面,如果能将人类知识有机注入预训练模型,AI有望像人类一样思考。


不过,这并不容易。由于知识数量级远小于无标注数据,简单混合容易导致知识被淹没,或者出现严重的过拟合。


02 AI模型的基本训练方法


目前,预训练模型的主流训练方法还是以有监督学习和自监督学习为主,半监督学习更多是配合有监督学习,用于减少数据标注、降低成本等场景。


有监督预训练:存在有标数据进行指导,所学出的特征对某些相关下游任务更加适配,但是却严重依赖人工标注;


自监督预训练:可不再受到人工标注的局限,利用海量无标数据进行学习,但学习成果更多是普适的语义表示。


半监督预训练:从迁移学习的角度来看,可以认为是一个前两种范式的自然延伸,可以充分利用有限的标注知识和大量的无标数据。


此次,达摩院研究人员将半监督学习和自监督学习进行融合,在预训练对话模型中实现了这一创新工作,相关论文已被AAAI2022接收。


半监督使用示意图


03 达摩院的半监督预训练建模方案


构建知识库:

达摩院构建了目前最大的对话动作标签知识库,用于刻画对话策略,总量达97万轮次;


SPACE 1.0模型:

此外,达摩院还设计了新型预训练对话模型SPACE 1.0,采用 encoder+decoder 架构,预训练的目标既包含了传统的建模对话理解和对话生成的自监督 loss,也包含了建模对话策略的半监督 loss。


达摩院使用的半监督训练方法


新模型在斯坦福 In-Car,剑桥MultiWOZ2.0和亚马逊 MultiWOZ2.1这三个国际主流对话数据集上均实现了SOTA(最佳效果),部分提升超过5%,幅度较大。


在具体案例中,新模型能够更准确预测出对话动作,能够更好和人类进行对话,避免答非所问。


一轮完整的对话过程


达摩院资深算法专家李永彬表示,这项工作还只是起步,如何将更多的人类标注知识通过半监督的方式注入到预训练模型中、如何让模型自动选择合适的知识、如何更好评价知识注入的效果,还需要体系化的探索和创新。


目前,SPACE 1.0模型已应用于阿里云智能客服等产品,对外输出服务客户。据艾瑞咨询最近发布的《2022年中国对话式AI行业发展白皮书》,阿里云智能客服已领跑中国对话式AI行业。



/ END /

目录
相关文章
|
18天前
|
机器学习/深度学习 人工智能 前端开发
【AI系统】AI编译器前瞻
本文基于《The Deep Learning Compiler: A Comprehensive Survey》调研,对比了TVM、nGraph、TC、Glow和XLA五个热门AI编译器,介绍了它们的特点和应用场景。文章分析了AI编译器面临的挑战,包括动态Shape问题、Python编译静态化、发挥硬件性能、特殊优化方法及易用性与性能兼顾问题,并展望了AI编译器的未来,探讨了编译器形态、IR形态、自动并行、自动微分及Kernel 自动生成等方面的发展趋势。
40 1
|
2月前
|
机器学习/深度学习 存储 人工智能
2024年诺贝尔奖:AI科学家的辉煌时刻 | AI大咖说
在今年的诺贝尔物理学奖和化学奖颁奖典礼上,AI科学家分别摘得了这两项殊荣,这无疑为AI技术的发展和应用注入了新的动力【10月更文挑战第5天】
81 0
|
5月前
|
人工智能 算法 搜索推荐
ai现实
【7月更文挑战第22天】ai现实
46 2
|
6月前
|
人工智能 自然语言处理
还在因AI检测头疼?尝试一下 AI Humanize
AI Humanize是一款将AI文本转化为人性化、难以检测的高质量内容的工具。它提供基础和高级模型,支持多语言,如英语、中文等,并能在多种AI检测器中通过。训练于大量人类语料库,AI Humanize的"Humanize AI LLM"模型确保生成自然、流畅的文本,增强可读性和原创性,同时保持用户友好界面。适用于各领域的用户提升内容质量。[AI Humanize](https://aihumanize.io/)**
还在因AI检测头疼?尝试一下 AI Humanize
|
6月前
|
机器学习/深度学习 人工智能 算法
【让AI写高考AI话题作文】看各大模型的回答
【让AI写高考AI话题作文】看各大模型的回答
|
6月前
|
人工智能 搜索推荐 机器人
AI发展已经一段时间了,当前社会身边哪些功能已经在运用了AI技术?未来AI技术还将有哪些地方会运用?
AI技术现已被广泛应用在智能家居(如自动化控制与安全)、个性化教育(定制化学习与辅助教学)、精准医疗(疾病诊断与药物研发)、智能服务(如智能客服)和金融服务(风险评估)等领域。未来,预计AI将在AI PC、人机协创、超级视野、机器人和零搜索等领域发挥更大作用,实现信息主动推送、无缝沟通和创新服务。随着技术进步,AI将持续影响并改变我们的生活。【6月更文挑战第2天】
176 0
|
7月前
|
人工智能
让AI帮忙写个需求,AI写出来了,只是有bug而已(二)
让AI帮忙写个需求,AI写出来了,只是有bug而已
让AI帮忙写个需求,AI写出来了,只是有bug而已(二)
|
机器学习/深度学习 人工智能 自然语言处理
关于AI:“我们有话说”
人工智能是一项具有广泛应用前景和深远意义的技术
|
机器学习/深度学习 人工智能 搜索推荐
拥抱AI-ChatGPT:人类新纪元
最近大模型通用智能应用持续发酵,各大科技公司都陆续推出了基于通用大模型的智能应用产品,典型的如OpenAI的ChatGPT、微软的BingChat、百度的文心一言、360的智脑、阿里的通义千问等。当然最火的要属于ChatGPT了,从去年年底推出到现在已经有很多人体验了,并惊叹于如今的人工智能已经发展到无所不知、无所不能的程度了。
103 0
|
SQL XML 存储
如何有效的向 AI 提问 ?
随着人工智能技术的迅猛发展,大语言模型(LLM)以微软 OpenAI 为代表,初次问世,为新一次的 AI 革命打响了第一枪。在短短的几个月内,GPT-3.5 和 GPT-4 的加持下,New Bing、Copilot、Cursor 等产品也相继问世,推动了产品开发的新思路。国内厂商也紧随其后,百度文心一言、华为盘古大模型、阿里通义千问、讯飞星火认知大模型相继发布。 我们现在可以通过与 AI 进行对话来获取各种信息和解决问题。但想要获得更准确、有用的回答,我们需要掌握如何向 AI 提问的技巧和方法。本文将探讨一些技巧,帮助您在与 ChatGPT 和其他类 ChatGPT 的大语言模型对话时更加有
1121 1
如何有效的向 AI 提问 ?