Java数据结构与算法分析(九)AVL树(平衡二叉树)

简介: AVL(Adelson-Velskii 和 Landis)树是带有平衡条件的二叉查找树,又叫做平衡二叉树。在AVL树中任何节点的两个子树高度差最多为1,所以它又被称为高度平衡树。

在这里插入图片描述

GitHub源码分享

主页地址:https://gozhuyinglong.github.io
源码分享:https://github.com/gozhuyinglong/blog-demos

1. AVL树

AVL(Adelson-Velskii 和 Landis)树是带有平衡条件的二叉查找树,又叫做平衡二叉树。在AVL树中任何节点的两个子树高度差最多为1,所以它又被称为高度平衡树。

如下图中可以清晰的看出,左边的树其根节点左子树高度为3,右子树高度为2,符合AVL树的特点;而右边的树其根节点左子树高度为3,右子树高度为1,不符合AVL树的特点。因此左边的树为AVL树,右边的树不是AVL树。

AVL树与非AVL树

那么怎样才能保持这种平衡呢?

答案便是在插入或删除节点时,通过对树进行简单的修正来保持平衡,我们称之为旋转

2. 旋转(rotation)

旋转分为单旋转(single rotation)和双旋转(double rotation)。

  • 当左右子树的高度差超过1,并且最高的叶子节点在“外边”时,使用单旋转。
  • 当左右子树的高度差超过1,并且最高的叶子节点在“里面”时,使用双旋转。

而单旋转又分为:

  • 左旋转,即向左旋转。当右子树的高度大于左子树时,进行左旋转。
  • 右旋转,即向右旋转。当左子树的高度大于右子树时,进行右旋转。

双旋转又分为:

  • 左-右双旋转,即先向左旋转(左子节点),再向右旋转。当左子树的高度大小右子树,并且左子树最高的叶子节点为其父节点的右子节点,那么需要左-右双旋转。
  • 右-左双旋转,即先向右旋转(右子节点),再向左旋转。当右子树的高度大小左子树,并且右子树最高的叶子节点为其父节点的左子节点,那么需要右-左双旋转。

单看这些名词概念是不容易理解的,下面我们通过图例来逐个介绍。

3. 左旋转

看下图中左边的树,该树是一棵二叉查找树,但是否满足AVL的特性呢?可以发现其根节点的左子树的高度为1,而右子树的高度为3,所以其不一棵AVL树。

经过观察,其右子树高于左子树,并且最高的叶子节点也在右边,那么我们使用左旋转进行平衡。

左旋转

详细旋转过程:

  • 将根节点4复制出一个新的节点,其左子节点为3保持不变,将其右子节点指向5(即原根节点的右子节点的左子节点)。
  • 将原根节点的右子节点6的左子节点指向新节点4,其右子节点为7保持不变,那么6便成了新的根节点。

哈哈,是不是有点绕,其实也可以简单理解为:既然右子树比左子树高,那么将树根4向左下移,将树根的右子节点6向上移,成为新的树根,这样便使左右子树的高度平衡了。结合上图,反复练习几次吧。

4. 右旋转

右旋转与左旋转正好是对称的,看下图中左边的树,该二叉查找树的左子树高度为3,而右子树高度为1,不满足AVL树的旋转。

因其左子树高于右子树,并且最高的叶子节点在左边,所以我们使用右旋转。

右旋转

详细旋转过程:

  • 将根节点7复制出一个新的节点,其右子节点为9保持不变,左子节点指向5(即原根节点的左子节点的右子节点)。
  • 将原根节点的左节点升级为新的根节点,即其左子树为3保持不变,右子节点指向新的根节点7。

左旋转与右旋转一定要理解,不然下面的双旋转就更容易晕菜了!

5. 双旋转

在介绍双旋转之前,先来看下图,其根节点的左子树高度为3,右子树高度为9,那么我们先使用右旋转的方式,看能不能达平衡的效果。

右旋转后未能达到效果

通过观察右旋转后的效果,是不满足AVL树的特性的。这便需要使用双旋转了。

我们使用左-右旋转来平衡上图中的树,即先进行左旋转,再进行右旋转,但其平衡点不同,如下图所示。

左-右双旋转

详细旋转过程:

  • 先将根节点的左子树(5节点)进行左旋转,降低其(5节点)右子树的高度。
  • 再将根节点进行右旋转,便达到了平衡效果。

那么反过来,右-左双旋转的详细过程:

  • 先将根节点的右子树进行右旋转,降低其右子树的高度。
  • 再将根节点进行左旋转。

6. 代码实现

AVL树的实现是在二叉查找树的基础上添加了平衡操作。

6.1 求节点高度

在Node类中添加节点高度方法heightleftHeightrightHeight,若节点为空则高度为0。

// 当前节点高度
public int height() {
   
   
    return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
}

// 左子节点高度
public int leftHeight() {
   
   
    if (left == null) {
   
   
        return 0;
    }
    return left.height();
}

// 右子节点高度
public int rightHeight() {
   
   
    if (right == null) {
   
   
        return 0;
    }
    return right.height();
}

6.2 左旋转

在Node类中增加左旋转方法leftRotate

public void leftRotate() {
   
   
    // 将当前节点向左下移,成为新的左节点
    Node newLeftNode = new Node(element);
    newLeftNode.left = left;
    // 将右子节点设为原根节点右子树的左子树
    newLeftNode.right = right.left;

    // 将右节点上移,成为新的树根(当前节点)
    element = right.element;
    // 将左子节点设为新的左子节点(原树根)
    left = newLeftNode;
    right = right.right;
}

6.3 右旋转

在Node类中增加右旋转方法rightRotate

public void rightRotate() {
   
   
    // 将当前节点向右下移,成为新的右子节点
    Node newRightNode = new Node(element);
    // 将左子节点指向原根节点的左子树的右子树
    newRightNode.left = left.right;
    newRightNode.right = right;

    // 将左子节点上移,成为新的树根(当前节点)
    element = left.element;
    left = left.left;
    // 将右子节点设为新的右子节点(原树根)
    right = newRightNode;
}

6.4 平衡方法

在AVLTree类中添加平衡方法balance,该方法用于判断是需要单旋转还是双旋转。

public void balance(Node node) {
   
   

    if (node == null) {
   
   
        return;
    }

    if (node.leftHeight() - node.rightHeight() > 1) {
   
   
        if (node.left.rightHeight() > node.left.leftHeight()) {
   
   
            node.left.leftRotate();
        }
        node.rightRotate();

    } else if (node.rightHeight() - node.leftHeight() > 1) {
   
   
        if (node.right.leftHeight() > node.right.rightHeight()) {
   
   
            node.right.rightHeight();
        }
        node.leftRotate();
    }
}

6.5 添加节点

在AVLTree类中增加添加节点方法,当添加完一个节点后,进行调用balance方法,来维持平衡。

private void add(Node node, int element) {
   
   
    if (node.compareTo(element) < 0) {
   
   
        if (node.left == null) {
   
   
            node.left = new Node(element);
        } else {
   
   
            add(node.left, element);
        }
    } else if (node.compareTo(element) > 0) {
   
   
        if (node.right == null) {
   
   
            node.right = new Node(element);
        } else {
   
   
            add(node.right, element);
        }
    }
    balance(node);
}

6.6 删除节点

在AVLTree类中增加删除节点方法,当删除完一个节点后,也进行调用balance方法,来维护平衡。

private void remove(Node parentNode, Node node, int element) {
   
   
    if (node == null) {
   
   
        return;
    }
    // 先找到目标元素
    int compareResult = node.compareTo(element);
    if (compareResult < 0) {
   
   
        remove(node, node.left, element);
    } else if (compareResult > 0) {
   
   
        remove(node, node.right, element);
    } else {
   
   
        // 找到目标元素,判断该节点是父节点的左子树还是右子树
        boolean isLeftOfParent = false;
        if (parentNode.left != null && parentNode.left.compareTo(element) == 0) {
   
   
            isLeftOfParent = true;
        }

        // 删除目标元素
        if (node.left == null && node.right == null) {
   
    // (1)目标元素为叶子节点,直接删除
            if (isLeftOfParent) {
   
   
                parentNode.left = null;
            } else {
   
   
                parentNode.right = null;
            }
        } else if (node.left != null && node.right != null) {
   
    // (2)目标元素即有左子树,也有右子树
            // 找到右子树最小值(叶子节点),并将其删除
            Node minNode = findMin(node.right);
            remove(minNode.element);
            // 将该最小值替换要删除的目标节点
            minNode.left = node.left;
            minNode.right = node.right;
            if (isLeftOfParent) {
   
   
                parentNode.left = minNode;
            } else {
   
   
                parentNode.right = minNode;
            }

        } else {
   
    // (3)目标元素只有左子树,或只有右子树
            if (isLeftOfParent) {
   
   
                parentNode.left = node.left != null ? node.left : node.right;
            } else {
   
   
                parentNode.right = node.left != null ? node.left : node.right;
            }
        }
    }
    balance(node);
}

6.7 完整代码

由于完整代码篇幅过长,这里就不展示了,可以通过GitHub进行访问,地址如下:
https://github.com/gozhuyinglong/blog-demos/blob/main/java-data-structures/src/main/java/io/github/gozhuyinglong/datastructures/tree/AVLTreeDemo.java

7. 总结

总结一句话来表示AVL树:AVL树是一棵其平衡因子(左右子树的高度差)的绝对值小于1的二叉查找树,其可以通过单旋转或双旋转来保持平衡。

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
94 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
39 2
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
32 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 算法 数据管理
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
这篇文章通过需求分析、代码实现和测试验证,详细介绍了二叉排序树的创建、遍历和删除操作,以及二叉平衡树(AVL)的自平衡特性和单旋转操作,旨在提高树结构在数据管理中的效率和性能。
54 0
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
71 2
|
2月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
34 0
|
2月前
|
存储 算法 Java
数据结构和算法--分段树
数据结构和算法--分段树
25 0
|
3月前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
2月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
44 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍