高性能 MySQL(九):通过重构查询语句,来解决慢查询

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 上一篇我们讲到通到优化数据访问,来解决慢查询问题,这是解决慢查询的基础。但有时我们的查询过于复杂,导致查询速度慢,我们不得不重构查询。今天就来讲下重构查询的几种方式。

1124b12ead6a5c105c0def9d99683009_image_auth_key=1686638158-k4ito9V84RiBtTY7W4kFt6-0-0ce128f77543dfb0d9800c544b6e83f0&file_size=58402.png

大家好,我是水滴~~

上一篇我们讲到通到优化数据访问,来解决慢查询问题,这是解决慢查询的基础。但有时我们的查询过于复杂,导致查询速度慢,我们不得不重构查询。今天就来讲下重构查询的几种方式。

🌲 一、分解复杂查询

重构查询时,有一个比较好的技巧是:将一个复杂的查询,分解成多个简单的查询。

在传统的实现中,总是想让数据库层完成尽可能多的工作,即通过一次查询得出想要的结果,这会让我们的查询变得复杂。之所有这样想逻辑,一般是认网络通信、查询解析和优化是一件代价很高的事情。

但是这样的想法对于 MySQL 并不适用,MySQL 从设计上让连接和断开连接都很轻量级,在返回一个小的查询结果方面很高效。

MySQL 内部每秒能够扫描内存中上百万行数据,相比之下,MySQL 响应数据给客户端就慢得多了。在条件相同的情况下,越少的查询性能就越好。所以将一个大查询分解为多个小查询是很有必要的。

🌲 二、切分大查询

有时候对于一个大查询我们需要“分而治之”,将大查询切分成小查询,每个小查询的功能完全一样,只完成一小部分,每次只返回一小部分查询结果。

批量删除旧的数据就是一个很好的例子。在定期清除大量数据时,如果用一个大的语句一次性完成的话,则可能需要一次锁住很多数据、占满整个事务日志、耗尽系统资源、阻塞很多小的但重要的查询。可以将一个大的delete语句切分成多个较小的语句,可以尽可能小地影响 MySQL 的性能,同时还能减少 MySQL 复制的延迟。

🌲 三、分解关联查询

很多高性能的应用都会对关联查询进行分解。即对每一个表进行一次单表查询,然后将结果在应用程序中进行关联。

例如,下面语句是查出“软件工程2101班”的所有学生:

SELECT
  s.* 
FROM
  class c
  JOIN class_student_rel cs ON c.id= cs.class_id
  JOIN student s ON s.id = cs.student_id
WHERE
  c.name= '软件工程2101班';

可以将该关联查询分解成两个单表查询:

select id from class where name= '软件工程2101班'; 
select student_id from class_student_rel where class_id = 1;
select * from student where id in (1, 2, 3, 4, 5, 6);

为什么要这样做呢?乍一看,这样做并没有什么好处,本来是一条查询,这里却需要变成多条查询,返回的结果又是一模一样的。

事实上,分解关联查询有如下优势:

  • 让缓存的效率更高。许多应用程序可以方便地缓存单表查询对应的结果对象。例如上面查询中的 class 已经被缓存了,那么应用程序就可以路过第一个查询。
  • 将查询分解后,执行单个查询可以减少锁的竞争。
  • 在应用层做关联,可以更容易对数据库进行拆分,更容易做到高性能和可扩展。
  • 查询本身效率也可能会有所提升。使用了in()代替关联查询,可以让 MySQL 按照 ID 顺序进行查询,这比随机的关联更高效。
  • 可以减少冗余记录的查询。在应用层做关联查询,意味着对于某条记录应用只需要查询一次,而在数据库中做关联查询,则可能需要重复地访问一部分数据。
  • 更进一步,这样做相当于在应用中实现了哈希关联,而不是使用 MySQL 的嵌套循环关联,会提高效率。
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
9天前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
|
8天前
|
SQL 关系型数据库 MySQL
【赵渝强老师】MySQL的慢查询日志
MySQL的慢查询日志用于记录执行时间超过设定阈值的SQL语句,帮助数据库管理员识别并优化性能问题。通过`mysqldumpslow`工具可查看日志。本文介绍了如何检查、启用及配置慢查询日志,并通过实例演示了慢查询的记录与分析过程。
|
17天前
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
46 9
|
18天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
45 3
|
24天前
|
SQL NoSQL 关系型数据库
2024Mysql And Redis基础与进阶操作系列(5)作者——LJS[含MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页等详解步骤及常见报错问题所对应的解决方法]
MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页、INSERT INTO SELECT / FROM查询结合精例等详解步骤及常见报错问题所对应的解决方法
|
22天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
110 1
|
28天前
|
SQL Java 关系型数据库
java连接mysql查询数据(基础版,无框架)
【10月更文挑战第12天】该示例展示了如何使用Java通过JDBC连接MySQL数据库并查询数据。首先在项目中引入`mysql-connector-java`依赖,然后通过`JdbcUtil`类中的`main`方法实现数据库连接、执行SQL查询及结果处理,最后关闭相关资源。
|
25天前
|
SQL 关系型数据库 MySQL
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
44 1
|
23天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
53 0
|
25天前
|
SQL 关系型数据库 MySQL
mysql编写sql脚本:要求表没有主键,但是想查询没有相同值的时候才进行插入
mysql编写sql脚本:要求表没有主键,但是想查询没有相同值的时候才进行插入
31 0
下一篇
无影云桌面