三维ImageNet开源!港中深韩晓光团队助力计算机视觉进入三维大数据时代

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 三维ImageNet开源!港中深韩晓光团队助力计算机视觉进入三维大数据时代


机器之心编辑部

随着深度学习技术的快速发展,数据驱动的方法已成为计算机视觉领域的核心。在过去的十年里,随着 ImageNet 诞生之后,计算机视觉领域见证了 “从数据中学习” 的范式的兴盛。在 ImageNet 上进行预训练,然后迁移到下游的视觉任务,都能显著提升模型性能,并且已经成为 2D 图像领域的标准化方式。

然而,由于真实世界 3D 数据(通常以点云或者 mesh 的形式)的扫描和标注非常繁琐,现有的 3D 数据集要么是合成的,要么与 ImageNet 的规模相去甚远。因此,与 2D 视觉领域不同,在 3D 领域,大多数方法都直接在特定数据集上进行训练和评估,以解决特定的 3D 视觉任务(例如,使用合成的物体或者 ShapeNet 进行新视角合成,使用 ModelNet 和 ScanObjectNN 进行物体分类,使用 KITTI 和 ScanNet 进行场景理解)。


两个关键的问题是:(1)在 3D 视觉领域,尚无一个通用数据集,可以与 2D 领域的 ImageNet 相媲美。(2)这样一个数据集能给 3D 社区带来什么好处还不为人所知。


为了解决这些问题,港中大(深圳)的研究团队提出了 MVImgNet 和 MVPNet 数据集。MVImgNet 包含超过 21 万个视频的 650 万帧图像,涵盖了 238 个类别的真实世界物体。MVPNet 包含超过 8 万个,涵盖了 150 个类别的真实物体点云,并为每个点云提供了类别标签。目前数据集已经在项目主页公开,欢迎大家一起探索!



论文地址:https://arxiv.org/abs/2303.06042  

项目主页:https://gaplab.cuhk.edu.cn/projects/MVImgNet/

GitHub 地址:https://github.com/GAP-LAB-CUHK-SZ/MVImgNet


数据集属性


MVImgNet 包含由智能手机拍摄的 219,188 个真实物体视频。通过对每个视频进行物体分割、COLMAP SfM 重建以及稠密重建,得到了物体掩码、相机参数和点云数据等标注。表 1 展示了 MVImgNet 中数据的统计信息。


表 1. MVImgNet 数据统计


与 ImageNet 中的类别大多是植物和动物(以自然为中心)不同,MVImgNet 包含了 238 个日常生活中常见的物体类别(以人为中心),并且其中有 65 个类别与 ImageNet 重叠。图 1&2 展示了 MVImgNet 的类别目录及数据样例。


图 1. MVImgNet 类别目录


图 2. MVImgNet 中的多视角图片示例


对 MVImgNet 中的稠密重建结果,研究团队进行了进一步的数据清洗(例如移除掉噪音过大、过于稀疏的点云),得到了一个包含 150 类、87,200 个真实物体点云的大规模点云数据集 ——MVPNet。图 3 展示了 MVPNet 中丰富的真实物体点云。


图 3. MVPNet 中的真实点云示例


MVImgNet 能做什么?


下游任务一:3D 重建


研究团队探索了 MVImgNet 对 NeRF 重建以及 MVS 的帮助:通过在 MVImgNet 上训练 NeRF,提升了 generalized NeRF 的泛化能力;通过在 MVImgNet 上预训练自监督 MVS 方法,并将预训练模型迁移到 DTU 数据集上,获得了不错迁移性能。下表展示了直接在 DTU 数据集上训练的模型与用 MVImgNet 预训练模型微调的量化对比结果:

 

表 2. 直接训练 / MVImgNet 预训练模型微调的数值结果


在 MVImgNet 上预训练的 NeRF 拥有更好的泛化能力


下游任务二:视角一致的图像理解


尽管人类能够从不同视角理解一个物体,但深度学习模型并不能鲁棒地做到这一点。为此,研究团队在图像分类、自监督对比学习以及显著性物体检测等任务上做了探索实验,验证了得益于数据的多视角特性,在 MVImgNet 上预训练的模型获得了很好的视角一致性。

 

把 MVImgNet 加入训练提升了分类模型的视角一致性


在 MVImgNet 上预训练的模型,能提高模型对不同视角的鲁棒性


MVPNet 能做什么?


在 MVPNet 数据集上,研究团队探索了其对点云分类及自监督点云预训练的帮助。通过在 MVPNet 上预训练点云分类模型,在 ScanObjectNN 数据集上表现出了很好的迁移性能。而在 MVPNet 上预训练的 PointMAE(一种点云自监督学习方法)也超越了当前的 SOTA 方法。

 

在 MVPNet 上预训练的模型,展现出了很好的迁移性能


MVPNet Benchmark Challenge


在 MVPNet 的基础上,研究团队还提出了一个全新的真实物体点云分类基准测试。研究团队构建了一个包含 64000 点云的训练集以及 16000 点云的测试集。相比于 ScanObjectNN,MVPNet 的点云数量更多,分类难度更大,也更贴近于真实场景。

 

主流方法在 MVPNet Benchmark 上的数值结果


展望


我们相信 MVImgNet 将会为整个计算机视觉社区带来很多诸多可能性与挑战,期待与大家共同探索!


更多数据集与实验细节请参阅原论文。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7月前
|
SQL 存储 分布式计算
从0到1介绍一下开源大数据比对平台dataCompare
从0到1介绍一下开源大数据比对平台dataCompare
451 0
|
4月前
|
数据可视化 大数据 定位技术
GIS:开源webgl大数据地图类库整理
GIS:开源webgl大数据地图类库整理
126 0
|
2月前
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
209 6
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
5月前
|
存储 机器学习/深度学习 大数据
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
Apache Flink 诚邀您参加 7 月 27 日在杭州举办的阿里云开源大数据 Workshop,了解流式湖仓、湖仓一体架构的最近演进方向,共探企业云上湖仓实践案例。
179 12
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
|
4月前
|
机器学习/深度学习 监控 大数据
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
|
7月前
|
机器学习/深度学习 算法 数据挖掘
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
634 1
|
5月前
|
机器学习/深度学习 分布式计算 大数据
MaxCompute 2.0:开源系统的集成与创新
增强实时处理能力:进一步加强与Flink等实时处理框架的合作。 强化机器学习支持:提供更多内置的机器学习算法和工具。 增强数据治理功能:提供更完善的数据质量和安全治理方案。
|
5月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
7月前
|
存储 分布式计算 Hadoop
【专栏】Hadoop,开源大数据处理框架:驭服数据洪流的利器
【4月更文挑战第28天】Hadoop,开源大数据处理框架,由Hadoop Common、HDFS、YARN和MapReduce组成,提供大规模数据存储和并行处理。其优势在于可扩展性、容错性、高性能、灵活性及社区支持。然而,数据安全、处理速度、系统复杂性和技能短缺是挑战。通过加强安全措施、结合Spark、自动化工具和培训,Hadoop在应对大数据问题中保持关键地位。
188 1
|
7月前
|
机器学习/深度学习 监控 算法
开源计算机视觉库OpenCV详解
开源计算机视觉库OpenCV详解