GIS:开源webgl大数据地图类库整理

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: GIS:开源webgl大数据地图类库整理

随着webgl的发展,涌现了一大批的地图大数据展示类库,有商用的,也有开源的,这里整理了一些典型的开源类库。
一、echarts及echarts-gl
国内百度开源的图表类库,熟知的是做各类统计图,其中也有地图相关方面的应用。
地址:https://www.echartsjs.com/zh/index.html
二、mapbox-gl
国外mapbox基于webgl开发的地图类库,比较专业,是专门做地图的类库。
地址:https://docs.mapbox.com/mapbox-gl-js/api/
三、mapv
国内百度专门地图可视化的类库。
地址:https://mapv.baidu.com/
四、AntV
蚂蚁金服开源的图表类库,其中的L7是专业地图的空间可视化展示。
地址:https://antv.vision/zh
五、deck.gl
国外Uber公司开源的地图大数据可视化类库,其中涉及到地图的可视化,可单独使用,还可以和mapbox-gl进行集成。
地址:https://deck.gl/#/
六、kepler.gl
kepler.gl是一个基于deck.gl开发的webgl大数据可视化展示项目。
地址:https://kepler.gl/
七、nebula.gl
同样是基于deck.gl进行开发的。
地址:https://nebula.gl/
八、maptalks.js
国内开源的地图类库,跟mapbox-gl有些类似,专业的地图实现。
地址:https://github.com/maptalks/maptalks.js
九、cesiumjs
开源的三维地图类库,主要侧重是加载大数据量的三维模型。
地址:https://cesium.com/cesiumjs/

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
存储 SQL 分布式计算
开源大数据比对平台设计与实践—dataCompare
开源大数据比对平台设计与实践—dataCompare
159 0
|
4月前
|
SQL 大数据 关系型数据库
开源大数据比对平台(dataCompare)新版本发布
开源大数据比对平台(dataCompare)新版本发布
211 0
|
4月前
|
SQL 存储 分布式计算
从0到1介绍一下开源大数据比对平台dataCompare
从0到1介绍一下开源大数据比对平台dataCompare
311 0
|
10月前
|
机器学习/深度学习 分布式计算 大数据
开源大数据平台的发展
开源大数据平台的发展
117 0
|
2月前
|
存储 机器学习/深度学习 大数据
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
Apache Flink 诚邀您参加 7 月 27 日在杭州举办的阿里云开源大数据 Workshop,了解流式湖仓、湖仓一体架构的最近演进方向,共探企业云上湖仓实践案例。
158 12
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
|
19天前
|
机器学习/深度学习 监控 大数据
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
|
2月前
|
机器学习/深度学习 分布式计算 大数据
MaxCompute 2.0:开源系统的集成与创新
增强实时处理能力:进一步加强与Flink等实时处理框架的合作。 强化机器学习支持:提供更多内置的机器学习算法和工具。 增强数据治理功能:提供更完善的数据质量和安全治理方案。
|
10月前
|
人工智能 分布式计算 大数据
开源大数据平台 3.0 技术解读
阿里云研究员,阿里云计算平台事业部开源大数据平台负责人王峰围绕新一代的流式湖仓、全面 Serverless 化、更智能的开源大数据等多维度解读开源大数据平台 3.0~
1227 1
开源大数据平台 3.0 技术解读
|
4月前
|
关系型数据库 分布式数据库 数据处理
【PolarDB 开源】PolarDB 在大数据分析中的应用:海量数据处理方案
【5月更文挑战第25天】PolarDB是解决大数据挑战的关键技术,以其高性能和可扩展性处理大规模数据。通过与数据采集和分析工具集成,构建高效数据生态系统。示例代码显示了PolarDB如何用于查询海量数据。优化策略包括数据分区、索引、压缩和分布式部署,广泛应用于电商、金融等领域,助力企业进行精准分析和决策。随着大数据技术进步,PolarDB将继续发挥关键作用,创造更多价值。
210 0
|
4月前
|
存储 分布式计算 Hadoop
【专栏】Hadoop,开源大数据处理框架:驭服数据洪流的利器
【4月更文挑战第28天】Hadoop,开源大数据处理框架,由Hadoop Common、HDFS、YARN和MapReduce组成,提供大规模数据存储和并行处理。其优势在于可扩展性、容错性、高性能、灵活性及社区支持。然而,数据安全、处理速度、系统复杂性和技能短缺是挑战。通过加强安全措施、结合Spark、自动化工具和培训,Hadoop在应对大数据问题中保持关键地位。
131 1