Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
函数计算FC,每月15万CU 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持

问题一:Pravega和Flink社区近期有哪些合作成果?


Pravega和Flink社区近期有哪些合作成果?


参考回答:

Pravega和Flink社区共同发布了白皮书,并期望未来有更多合作,将Flink计算推向数据的产生端,通过Pravega实现数据从端到云的流动。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672028



问题二:如何看待Flink在实时计算方面已趋于成熟这个话题,目前大家都用实时计算做什么?


如何看待Flink在实时计算方面已趋于成熟这个话题,目前大家都用实时计算做什么?


参考回答:

多位大数据专家在圆桌会议上讨论了Flink在实时计算方面的成熟度,并分享了各自公司使用实时计算的实际案例,如高时效业务场景的数据处理、实时分析、实时监控等。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672029



问题三:实时计算的未来是怎样的(技术和业务层面)?基于此,Flink需要探索哪些新的领域,解决哪些关键问题?


实时计算的未来是怎样的(技术和业务层面)?基于此,Flink需要探索哪些新的领域,解决哪些关键问题?


参考回答:

专家们认为实时计算的未来将更加深入技术与业务层面,Flink需要探索新领域如流式数仓、实时机器学习等,并解决数据一致性、扩展性、性能优化等关键问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672030



问题四:Flink在整个开源大数据生态中应该如何定位,如何保持差异化?


Flink在整个开源大数据生态中应该如何定位,如何保持差异化?


参考回答:

专家们认为Flink在开源大数据生态中应定位为实时计算的领导者,通过持续的技术创新和社区贡献保持其差异化优势。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672031



问题五:使用和贡献开源项目有哪些优势?公司内部在做Flink哪方面的探索?过程中又遇到过哪些挑战?


使用和贡献开源项目有哪些优势?公司内部在做Flink哪方面的探索?过程中又遇到过哪些挑战?


参考回答:

使用开源项目可以获得广泛的社区支持、快速的技术迭代和较低的成本。公司内部在Flink的流批一体、流式数仓等方面进行了探索,过程中遇到了数据一致性、性能优化等挑战。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672032

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
相关文章
|
11月前
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
1063 1
|
10月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
655 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
6月前
|
存储 运维 监控
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
本文总结了阿里妈妈数据技术专家陈亮在Flink Forward Asia 2024大会上的分享,围绕广告业务背景、架构设计及湖仓方案演进展开。内容涵盖广告生态运作、实时数仓挑战与优化,以及基于Paimon的湖仓方案优势。通过分层设计与技术优化,实现业务交付周期缩短30%以上,资源开销降低40%,并大幅提升系统稳定性和运营效率。文章还介绍了阿里云实时计算Flink版的免费试用活动,助力企业探索实时计算与湖仓一体化解决方案。
779 3
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
|
6月前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
252 6
|
8月前
|
SQL 存储 大数据
Flink 基础详解:大数据处理的强大引擎
Apache Flink 是一个分布式流批一体化的开源平台,专为大规模数据处理设计。它支持实时流处理和批处理,具有高吞吐量、低延迟特性。Flink 提供统一的编程抽象,简化大数据应用开发,并在流处理方面表现卓越,广泛应用于实时监控、金融交易分析等场景。其架构包括 JobManager、TaskManager 和 Client,支持并行度、水位线、时间语义等基础属性。Flink 还提供了丰富的算子、状态管理和容错机制,如检查点和 Savepoint,确保作业的可靠性和一致性。此外,Flink 支持 SQL 查询和 CDC 功能,实现实时数据捕获与同步,广泛应用于数据仓库和实时数据分析领域。
3968 32
zdl
|
10月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
410 56
|
9月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
1075 2
探索Flink动态CEP:杭州银行的实战案例
|
10月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
264 1
|
2月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
76 4
|
2月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
166 3

热门文章

最新文章