Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
函数计算FC,每月15万CU 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持

问题一:Pravega和Flink社区近期有哪些合作成果?


Pravega和Flink社区近期有哪些合作成果?


参考回答:

Pravega和Flink社区共同发布了白皮书,并期望未来有更多合作,将Flink计算推向数据的产生端,通过Pravega实现数据从端到云的流动。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672028



问题二:如何看待Flink在实时计算方面已趋于成熟这个话题,目前大家都用实时计算做什么?


如何看待Flink在实时计算方面已趋于成熟这个话题,目前大家都用实时计算做什么?


参考回答:

多位大数据专家在圆桌会议上讨论了Flink在实时计算方面的成熟度,并分享了各自公司使用实时计算的实际案例,如高时效业务场景的数据处理、实时分析、实时监控等。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672029



问题三:实时计算的未来是怎样的(技术和业务层面)?基于此,Flink需要探索哪些新的领域,解决哪些关键问题?


实时计算的未来是怎样的(技术和业务层面)?基于此,Flink需要探索哪些新的领域,解决哪些关键问题?


参考回答:

专家们认为实时计算的未来将更加深入技术与业务层面,Flink需要探索新领域如流式数仓、实时机器学习等,并解决数据一致性、扩展性、性能优化等关键问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672030



问题四:Flink在整个开源大数据生态中应该如何定位,如何保持差异化?


Flink在整个开源大数据生态中应该如何定位,如何保持差异化?


参考回答:

专家们认为Flink在开源大数据生态中应定位为实时计算的领导者,通过持续的技术创新和社区贡献保持其差异化优势。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672031



问题五:使用和贡献开源项目有哪些优势?公司内部在做Flink哪方面的探索?过程中又遇到过哪些挑战?


使用和贡献开源项目有哪些优势?公司内部在做Flink哪方面的探索?过程中又遇到过哪些挑战?


参考回答:

使用开源项目可以获得广泛的社区支持、快速的技术迭代和较低的成本。公司内部在Flink的流批一体、流式数仓等方面进行了探索,过程中遇到了数据一致性、性能优化等挑战。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672032

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
相关文章
|
10天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
190 12
|
4月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
218 0
|
5天前
|
人工智能 运维 安全
聚焦 AI 应用基础设施,云栖大会 Serverless AI 全回顾
2025 年 9 月 26 日,为期三天的云栖大会在杭州云栖小镇圆满闭幕。随着大模型技术的飞速发展,我们正从云原生时代迈向一个全新的 AI 原生应用时代。为了解决企业在 AI 应用落地中面临的高成本、高复杂度和高风险等核心挑战,阿里云基于函数计算 FC 发布一系列重磅服务。本文将对云栖大会期间 Serverless+AI 基础设施相关内容进行全面总结。
|
16天前
|
人工智能 Kubernetes 安全
重塑云上 AI 应用“运行时”,函数计算进化之路
回顾历史,电网的修建,深刻地改变了世界的经济地理和创新格局。今天,一个 AI 原生的云端运行时的进化,其意义也远不止于技术本身。这是一次设计哲学的升华:从“让应用适应平台”到“让平台主动理解和适应智能应用”的转变。当一个强大、易用、经济且安全的 AI 运行时成为像水电一样的基础设施时,它将极大地降低创新的门槛。一个独立的开发者、一个小型创业团队,将有能力去创造和部署世界级的 AI 应用。这才是技术平权的真谛,是激发全社会创新潜能的关键。
|
6天前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
68 14
|
2月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
75 0
|
3月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
92 4
|
3月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
203 3
|
3月前
|
SQL 人工智能 分布式计算
ODPS:数据浪潮中的成长与突围
本文讲述了作者在大数据浪潮中,通过引入阿里云ODPS体系(包括MaxCompute、DataWorks、Hologres)解决数据处理瓶颈、实现业务突破与个人成长的故事。从被海量数据困扰到构建“离线+实时”数据架构,ODPS不仅提升了数据处理效率,更推动了技术能力与业务影响力的双重跃迁。
|
7天前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
68 14

热门文章

最新文章