Star量近8万,大火AutoGPT星标超PyTorch,网友:看清它的局限性

简介: Star量近8万,大火AutoGPT星标超PyTorch,网友:看清它的局限性


英伟达 AI 科学家 Jim Fan 表示,「AutoGPT 只是一项有趣的实验,虽然火爆但并不意味着可以投入生产。」他的观点得到了很多人的附和和现身说法。

仿佛一夜之间,AI 圈出现了一个新晋顶流:AutoGPT。


顾名思义,AutoGPT 为自主人工智能,一项任务交给它,它能自主地提出计划,然后执行,完全不用人类插手的那种。此外其还具有互联网访问、使用 GPT-3.5 进行文件存储和生成摘要等功能。


例如,用户让 AutoGPT 建立一个网站,提出的要求是让其创建一个表单,并在表单上添加标题「Made with autogpt」,最后将背景更改为蓝色,用时不到 3 分钟,不用人类参与,AutoGPT 自己就搞定了,就像下面展示的那样。期间 AutoGPT 采用的 React 和 Tailwind CSS,都是自己决定的。


一个示例看下来,AutoGPT 已经能够自己上网查资料、使用第三方工具、操作你的电脑。从上线以来,项目热度不减,截至今天,AutoGPT 的 GitHub Star 量达到 78k,马上接近 80k,超过了 PyTorch 的 65k。


AutoGPT 地址:https://github.com/torantulino/auto-gpt

PyTorch 地址:https://github.com/pytorch/pytorch


要知道,AutoGPT 是一个刚上线没几天的项目,而 PyTorch 的最初版本可追溯到 2018 年。不仅如此,从推特网友的总结来看,AutoGPT 还超过了 Bitcoin、 Django 等项目的 Star 量。


图源:https://twitter.com/MattPRD/status/1647653434760515584

就连前特斯拉 AI 总监、刚刚回归 OpenAI 的 Andrej Karpathy 对此都评价道:「AutoGPT 是 prompt 工程的下一个前沿。」



不过,与看好 AutoGPT 发展不同的是,来自英伟达的 AI 科学家 Jim Fan 却对此泼了一盆冷水。


Jim Fan 表示自己仅将 AutoGPT 视为一项有趣的实验,仅此而已,而且这项研究虽然火爆但并不意味着可以投入生产,网上很多酷炫的演示都是精心挑选出来的。


随后,Jim Fan 还表示,在其实验中「AutoGPT 可以很好地解决某些简单且定义明确的任务,但大多数时候对真正有用的、更难的任务,AutoGPT 并不可靠。


这种不可靠性可以归因于 GPT-4 固有的局限性。如果不能访问 GPT-4 权重或者更好的微调,我认为仅仅通过提示技巧无法从根本上解决问题。


就像没有任何提示可以将 GPT-3 变成 GPT-4 的能力一样,我不认为 AutoGPT + 冻结的 GPT-4 可以可靠地解决重要的复杂决策。当前的媒体炒作正在将该项目推向完全不切实际的期望。」


附和者众:AutoGPT 局限大,无法解决任何商业问题


Jim Fan 的观点获得了很多人的赞同。有人认为,「诚然,AutoGPT 是一个伟大的实验,并将引领通过智能体自主完成很多酷炫事情的浪潮。但它不能成为一个可以构筑解决任何商业问题基础的产品,毕竟太不可预测了。」



光说不练没有说服力,有人现身说法,表示自己整个周六都在让 AutoGPT 打开一个 docx 文档、打开其导出的 ChatGPT 对话以提供更多上下文(json)、浏览其他技术内容并重写 docx 文档。遗憾的是,AutoGPT 甚至都未能接近达成这些目标,还是放弃吧。


这类体验例子还有很多,有人针对现实世界的问题尝试大量 prompt,但 AutoGPT 总是朝着没有任何意义的不同方向发展。


不同意见者:虽被夸大,其前景与 GPT 相当


在很多人赞同 Jim Fan 观点的同时,也有人指出,虽然 AutoGPT 肯定被夸大了,并且现在非常「蛮力」、不优雅。但它展示的前景仍然非常强大,几乎与 GPT 模型相当。


有人从应用的角度剖析 AutoGPT 的不足,目前它虽然无法很好地解决很多事情,比如循环(loop)、切线、随机完成不同的任务。但要弄清楚的是,AutoGPT 需要大量的脑力,预计它会变得越来越好。


持上述观点的不是个例,「AutoGPT 肯定会随时间推移而愈加完善。像这样的项目两年前就已经成为了可能,尽管在任意通用域上的可靠使用也许只能在数年而非数月内到来。」


机器之心的读者们,你们认为 AutoGPT 会是昙花一现吗?看不看好它的前景呢?请在评论区留下自己的观点吧!


参考链接:https://twitter.com/DrJimFan/status/1647616587199815684

相关文章
|
人工智能 PyTorch 算法框架/工具
GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了
GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了
389 0
|
人工智能 JSON 前端开发
大火AutoGPT星标超PyTorch,网友:看清它的局限性
大火AutoGPT星标超PyTorch,网友:看清它的局限性
|
机器学习/深度学习 人工智能 并行计算
首个大众可用PyTorch版AlphaFold2复现,哥大开源OpenFold,star量破千
首个大众可用PyTorch版AlphaFold2复现,哥大开源OpenFold,star量破千
283 0
|
存储 人工智能 运维
GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了
GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了
323 0
GitHub 7.5k star量,各种视觉Transformer的PyTorch实现合集整理好了
|
SQL 机器学习/深度学习 分布式计算
2019数据科学家最需要的技能盘点,Python大火,Pytorch职位需求翻番
2018年medium上一篇博文分析了数据科学家最需要的技能,那篇文章引起了很大的反响,在medium上有超过11000次点赞,并被翻译成几种语言,成为了2018年11月KD Nuggets最受欢迎的文章。
1692 0
2019数据科学家最需要的技能盘点,Python大火,Pytorch职位需求翻番
|
机器学习/深度学习 自然语言处理 算法
Github 上 Star 过千的 PyTorch NLP 相关项目
Github 上有许多成熟的 PyTorch NLP 代码和模型, 可以直接用于科研和工程中。本文介绍其中一下 Star 过千的时下热点项目。
5533 0
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
337 2
|
15天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
33 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
65 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
113 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力