带你读《企业级云原生白皮书项目实战》——5.3.1 开始使用(1)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 带你读《企业级云原生白皮书项目实战》——5.3.1 开始使用(1)

5.3 实时计算Flink版


5.3.1 开始使用


5.3.1.1 Flink基础架构

image.png


Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台。

它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能。

现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为他们它们所提供的SLA是完全不相同的:

•流处理一般需要支持低延迟、Exactly-once保证

•批处理需要支持高吞吐、高效处理

所以在实现的时候通常是分别给出两套实现方法,或者通过一个独立的开源框架来实现其中每一种处理方案。

例如,实现批处理的开源方案有MapReduce、Tez、Crunch、Spark,实现流处理的开源方案有Samza、Storm。

Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来:

•Flink是完全支持流处理,也就是说作为流处理看待时输入数据流是无界的;

•批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。

•基于同一个Flink运行时(Flink Runtime),分别提供了流处理和批处理API,而这两种API也是实现上层面向流处理、批处理类型应用框架的基础。

基础特性:

关于Flink所支持的特性,我这里只是通过分类的方式简单做一下梳理,涉及到具体的一些概念及其原理会在后面的部分做详细说明。

流处理特性

•支持高吞吐、低延迟、高性能的流处理

•支持带有事件时间的窗口(Window)操作

•支持有状态计算的Exactly-once语义

•支持高度灵活的窗口(Window)操作,支持基于time、count、session,以及data-driven的窗口操作

•支持具有Backpressure功能的持续流模型

•支持基于轻量级分布式快照(Snapshot)实现的容错

•一个运行时同时支持Batch on Streaming处理和Streaming处理

•Flink在JVM内部实现了自己的内存管理

•支持迭代计算

•支持程序自动优化:避免特定情况下Shufflfflffle、排序等昂贵操作,中间结果有必要进行缓存

API支持:

对Streaming数据类应用,提供DataStream API

对批处理类应用,提供DataSet API(支持Java/Scala)

与其他外部系统对接支持如下:

•支持HDFS

•支持来自Kafka的输入数据

•支持Apache HBase

•支持Hadoop程序

•支持Tachyon

•支持ElasticSearch

•支持RabbitMQ

•支持Apache Storm

•支持S3

•支持XtreemFS

•支持OSS

•支持Mysql

•支持Hudi

•支持SLS


《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.1 开始使用(2) https://developer.aliyun.com/article/1228412?groupCode=supportservice


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
15天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
47 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
66 5
|
1月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
65 0
|
1月前
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
103 0
|
1月前
|
消息中间件 分布式计算 大数据
大数据-121 - Flink Time Watermark 详解 附带示例详解
大数据-121 - Flink Time Watermark 详解 附带示例详解
67 0
|
5天前
|
存储 Cloud Native 块存储
EBS深度解析:云原生时代企业级块存储
企业上云的策略,从 Cloud-Hosting 转向 Serverless 架构。块存储作为企业应用上云的核心存储产品,将通过 Serverless 化来加速新的计算范式全面落地。在本话题中,我们将会介绍阿里云块存储企业级能力的创新,深入解析背后的技术细节,分享对未来趋势的判断。
|
16天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
47 1
zdl
|
2天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
15 0
|
1月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
55 1
|
1月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算

热门文章

最新文章