带你读《企业级云原生白皮书项目实战》——5.3.2 Flink任务开发相关(2)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 带你读《企业级云原生白皮书项目实战》——5.3.2 Flink任务开发相关(2)

《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.2 Flink任务开发相关(1) https://developer.aliyun.com/article/1228387?groupCode=supportservice


•分库分表场景主要是通过flflink sql 来实现cdc方式的分库分表实时合并写入。

image.png


•整库同步场景通常CDAS都会配合数据源的Catalog和目标的Catalog一起使用,例如MySQL Catalog和Hologres Catalog结合CDAS语法,完成 MySQL到Hologres的全量和增量数据同步。使用MySQL1Catalog可以自动解析源表的Schema及相应的参数,而不用手动编写DDL。假设我们已在工作空间中注册了名为holo的Hologres Catalog和名为mysql的MySQL Catalog,MySQL中有一个tpcds的

库。您可以使用以下语句将tpcds库下的24张表全部同步到Hologres中,包括未来的数据变更和表结构变更,无需提前在Hologres中创建表。

USE CATALOG holo; 
CREATE DATABASE IF NOT EXISTS holo_tpcds -- 在hologres中创建holo_tpcds库。
WITH ('sink.parallelism' = '4') -- 可选,指定目标库的参数,每个holo sink默认使用4并发。 
AS DATABASE mysql.tpcds INCLUDING ALL TABLES -- 同步mysql中tpcds库下所有表。 /*+ OPTIONS('server-id'='8001-8004') */ ; -- 可选,指定mysql-cdc源表的额外参数。

说明Hologres支持在创建目标Database时指定WITH参数,这些参数仅对当前作业生效,用于控制写入目标表时的行为,不会持久化到Hologres中。

•分库合并同步对于分库合并同步的场景,需要利用正则表达式的库名来匹配所要同步的多个分库。使用CDAS可以将上游多个分库下相同表名的数据合并同步到Hologres目标库对应表名的同一张表中,库名和表名会作为额外的两个字段写入到每张目标表中。为保证主键唯一性,库名、表名和原主键一起作为对应Hologres表的新联合主键。假设MySQL实例中有order_db01~order_db99多个分库,每个分库下都有order、order_detail等多张表。您可以使用以下语句将99个分库下的order、order_detail等表全部同步到Hologres中,包括未来的数据变更和表结构变更,无需提前在Hologres中创建表。

image.png


USE CATALOG holo; 
CREATE DATABASE IF NOT EXISTS holo_order -- 在Hologres中创建holo_order库,包括mysql中order分库的所有表。 
WITH ('sink.parallelism' = '4') -- 可选,指定目标库的参数,每个Hologres Sink默认并发为4。
AS DATABASE mysql.`order_db[0-9]+` INCLUDING ALL TABLES -- 同步mysql中order_db分库下所有表。 /*+ OPTIONS('server-id'='8001-8004') */ ; -- 可选,指定mysql-cdc源表的额外参数。

分库分表合并同步,对于分库分表合并同步的场景,您可以结合MySQL Cata

log,利用正则表达式的表名和库名来匹配所要同步的多张表。使用CTAS可以将这多

张分库分表合并到一张Hologres表中,库名和表名会作为额外的两个字段写入到该

表中,为保证主键唯一性,库名、表名和原主键一起作为该Hologres表的新联合主

键。

USE CATALOG holo; 
CREATE TABLE IF NOT EXISTS user WITH ('jdbcWriteBatchSize' = '1024') 
AS TABLE mysql.`wp.*`.`user[0-9]+` /*+ OPTIONS('server-id'='8001-8004') */;

其合并的效果如下图所示。

image.png


如果在user02新增一列age,并插入一条数据。此时虽然多张分表的Schema并不一致,但是user02上后续的数据和Schema变更都能实时地自动同步到下游表中。

ALTER TABLE `user02` ADD COLUMN `age` INT; 
INSERT INTO `user02` (id, name, age) VALUES (27, 'Tony', 30);


《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.2 Flink任务开发相关(3) https://developer.aliyun.com/article/1228384?groupCode=supportservice

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
124 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
74 5
|
2月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
81 0
|
2月前
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
143 0
|
2月前
|
消息中间件 分布式计算 大数据
大数据-121 - Flink Time Watermark 详解 附带示例详解
大数据-121 - Flink Time Watermark 详解 附带示例详解
80 0
zdl
|
29天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
145 56
|
21天前
|
Kubernetes Cloud Native 开发者
通义灵码对云原生应用开发的支持
通义灵码是阿里巴巴云推出的一款强大的云原生应用开发工具,支持容器化、编排技术等,提供从Dockerfile生成、容器镜像构建与推送,到Kubernetes配置文件生成及与Kubernetes集群集成的全方位支持,极大简化了云原生应用开发流程,提升了开发效率和应用质量。
通义灵码对云原生应用开发的支持
|
1月前
|
存储 Cloud Native 块存储
EBS深度解析:云原生时代企业级块存储
企业上云的策略,从 Cloud-Hosting 转向 Serverless 架构。块存储作为企业应用上云的核心存储产品,将通过 Serverless 化来加速新的计算范式全面落地。在本话题中,我们将会介绍阿里云块存储企业级能力的创新,深入解析背后的技术细节,分享对未来趋势的判断。
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
64 1
|
2月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
70 1