CSL-YOLO | 超越Tiny-YOLO V4,全新设计轻量化YOLO模型实现边缘实时检测!!!(一)

简介: CSL-YOLO | 超越Tiny-YOLO V4,全新设计轻量化YOLO模型实现边缘实时检测!!!(一)

1简介

由于计算资源有限,开发轻量级目标检测器是必要的。为了降低计算成本,如何生成冗余特征起着至关重要的作用。

本文提出了一种新的轻量级卷积方法——Cross-Stage Lightweight(CSL)模块,从简单的操作中生成冗余特征。在中间展开阶段用深度卷积代替逐点卷积来生成候选特征。所提出的CSL模块可以显著降低计算量。在MS-COCO上进行的实验表明,所提出的CSL-Module可以达到近似卷积的拟合能力。

最后,利用该模块构建了轻量级检测器CSL-YOLO,在仅43% FLOPs和52%参数的情况下,实现了比TinyYOLOv4更好的检测性能。


2本文方法


2.1 CSL-Module

以往的研究表明,使用更少的计算量来生成冗余特征图,可以大大减少FLOPs。CSPNet提出了一种跨阶段求解的方法,GhostNet系统地验证了cheap操作在该问题中的有效性。然而,问题是生成有价值的特征图的主要操作对于边缘计算来说仍然过于复杂。

本文建议将输入特征映射划分为2个分支。第1个分支通过像GhostNet那样的cheap操作生成一半冗余的特征图;第2个分支通过轻量级主操作生成另外一半必要的特性映射,然后将2个输出cat在一起。总体架构如下图所示。

image.png

超参数表示特征扩展的比例。在CSL-Bone中将设为3,在else中将设为2。当下采样或扩展块后需要注意力时,插入SE模块或自适应平均池化。此外,作者还使用了Mish作为激活函数,在实验中,Mish在CNN模型中的表现优于ReLU和Swish。

本文所提出的CSL-Module通过跳过分支的操作生成半冗余特征映射。在主分支上,它不同于CSP模块和Ghost模块。作者建议一个轻量级的主操作来生成另外一半必要的特性映射。在这个分支中设计了一个类似IRB的扩展块,利用跳跃分支的输入特征图和输出特征图,通过深度卷积生成中间候选特征图。

这个块的最大优点之一是无需pointwise CNN,大家都知道深度卷积比pointwise CNN的FLOPs要少得多。它不同于IRB。IRB使用逐点卷积来生成候选特征图。这个块的其他优点是它充分考虑了所有当前可用的特性,这可以最小化冗余计算。此外,因为已经有了跳跃分支,主分支只需要生成一半的特性图,显著减少了FLOPs。

总的来说,所提出的CSL-Module通过cheap操作和跨阶段的思想减少了FLOPs。另一方面,特别对主分支进行了轻量级设计。替换了VGG-16中的卷积层来验证CSL-Module的有效性,分别将新的模型记为IRB-VGG-16、Ghost-VGG-16和CSLVGG-16。

在CIFAR-10上对它们进行了评估,训练设置和trick都是相同的(例如,flip、affine、mixup和steps learning rate)。从下表可以看出,CSL-Module比其他轻量级卷积方法更快。实验证明CSL-Module是一种非常有竞争力的轻量级卷积方法。

image.png

image.png

2.2 构建轻量化组件

本文提出了2种轻量级组件CSL-Bone和CSL-FPN。这2个组件是目标检测器所必需的。CSL-Bone比其他backbone模型提取输入图像的特征值更少;CSL-FPN能更有效地预测不同尺度上的边界框。

1、Lightweight Backbone

本文所提的CSL-Bone由几个CSL-Module组成。SE模块集成到第1个CSL-Module中,增强了整个组的特征提取能力。此外,还在适当的位置插入池化层进行降采样,以获得高级语义特征。

image.png

最后,CSL-Bone输出3种不同比例的特征图。总体架构如上图所示。作者在CIFAR-10上评估了CSL-Bone、MobileNetv2和GhostNet,并应用了相同的训练设置。由表2可以看出。尽管CSL-Bone的准确率低于MobileNetv2,但CSL-Bone的FLOPs仅比MobileNetv2低58.7%。另一方面,CSL-Bone的准确率比GhostNet高,但只略微增加了FLOPs。

2、Lightweight FPN

以往的研究表明,大尺度特征图具有更多的物体细节,如边缘、角落或纹理,而小尺度特征图具有全面的语义理解。Vanilla FPN将小特征图向上采样,然后将它们与大特征图融合。另一方面,Vanilla FPN输出3比例尺特征图。这有助于模型检测不同尺寸的物体。

本文提出的CSL-FPN首先将FPN中的所有卷积替换为CSL-Module。其次,在扩展阶段,在2个尺度层之间形成一个中尺度层,这些中尺度层可以增强模型对不同尺度目标的检测能力;第3,在重复阶段,同时有(k)th层、(k-1)th层和(k+1)th层进行特征融合,但每次只使用奇层或偶层。

例如,在第1次融合中只有第2层和第4层,而在第2次融合中,有第1层,第3层和第5层。也就是说,所提出的CSL-FPN具有与Vanilla FPN相同的卷积数,但具有更多的特征融合。总体架构如图所示。

image.png

在本文提出的CSL-FPN的实现中,为了使元素的添加更容易,作者在层扩展阶段将5个输出层的通道设置为相同的。重复阶段使用一个超参数R来表示CSL-FPN总共堆叠了几个块。较大的R可以实现更高的AP,但FLOPs也会增加,因此在速度和性能之间存在权衡。作者在基于 CSL-YOLO的MS-COCO上测试了R的最佳值。表3显示了结果。随着R的增大,AP也从18.6%提高到19.8%,AP50从35.5%提高到37.2%,MFLOPs也从127下降到409。经过权衡决定将R设为3。

image.png

相关文章
|
算法 Go 文件存储
DAMO-YOLO: 兼顾速度与精度的新目标检测框架
我们团队最近开源了DAMO-YOLO!其效果达到了YOLO系列的SOTA,欢迎各位试用!​简介DAMO-YOLO是一个兼顾速度与精度的目标检测框架,其效果超越了目前的一众YOLO系列方法,在实现SOTA的同时,保持了很高的推理速度。DAMO-YOLO是在YOLO框架基础上引入了一系列新技术,对整个检测框架进行了大幅的修改。具体包括:基于NAS搜索的新检测backbone结构,更深的neck结构,精
1100 0
DAMO-YOLO: 兼顾速度与精度的新目标检测框架
|
机器学习/深度学习 编解码 固态存储
超轻目标检测 | 超越 NanoDet-Plus、YOLOv4-Tiny实时性、高精度都是你想要的!
超轻目标检测 | 超越 NanoDet-Plus、YOLOv4-Tiny实时性、高精度都是你想要的!
759 0
超轻目标检测 | 超越 NanoDet-Plus、YOLOv4-Tiny实时性、高精度都是你想要的!
|
1月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
1192 1
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
309 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 XML 并行计算
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用YOLOX完成图像目标检测任务的完整流程,包括数据准备、模型训练、验证和测试。
153 0
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
5月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv10论文解读:实时端到端的目标检测模型
YOLOv10论文解读:实时端到端的目标检测模型
|
5月前
|
固态存储
【YOLO系列】YOLOv10模型结构详解与推理部署实现
【YOLO系列】YOLOv10模型结构详解与推理部署实现
917 0
|
6月前
|
机器学习/深度学习 网络架构
YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)
YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)
451 1
|
机器学习/深度学习 算法 自动驾驶
YOLOX-PAI:加速YOLOX,比YOLOV6更快更强
本文,我们将逐一介绍所探索的相关改进与消融实验结果,如何基于PAI-EasyCV使用PAI-Blade优化模型推理过程,及如何使用PAI-EasyCV进行模型训练、验证、部署和端到端推理。欢迎大家关注和使用PAI-EasyCV和PAI-Blade,进行简单高效的视觉算法开发及部署任务。
|
算法 PyTorch 调度
ResNet 高精度预训练模型在 MMDetection 中的最佳实践
作为最常见的骨干网络,ResNet 在目标检测算法中起到了至关重要的作用。许多目标检测经典算法,如 RetinaNet 、Faster R-CNN 和 Mask R-CNN 等都是以 ResNet 为骨干网络,并在此基础上进行调优。同时,大部分后续改进算法都会以 RetinaNet 、Faster R-CNN 和 Mask R-CNN 为 baseline 进行公平对比。
907 0
ResNet 高精度预训练模型在 MMDetection 中的最佳实践