m基于PCA-SA低纬紧致姿态空间学习算法的单目视频人体姿态提取matlab仿真

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: m基于PCA-SA低纬紧致姿态空间学习算法的单目视频人体姿态提取matlab仿真

1.算法仿真效果
matlab2013b仿真结果如下:

bed2a901088b0fb909404029996ef6e9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5eb0083328e72700d7cda04f43dc51ed_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
8197fa1ccd0b6f8dddf4c59a44b7ee75_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9c65c4030f96f0296177c1f81a9006f3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
473d783cad9721f3b31969ec2b3f8167_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fb31e692a12a62b2071acb3d582cdd60_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
85ce4fb88070dd1e85ba3306908b104d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3fce0a6a8292924cda8e63d5b60c9005_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fe6e8e47655be37bb02611a22d713510_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
139f59db9c4afce50d7fdfe6cd8b95f6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
daf68fe28554b1c5762f7b81963f124e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

659050a8be112d1072aed5d45df2b8ea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    介绍了运动人体的剪影提取,在视频序列中,由于受到复杂背景、遮挡、光照变化等因素的影响,通常的背景分离算法无法有效的对运动人体进行提取,本文介绍了一种基于高斯混合模型和帧差法相结合的运动目标提取算法,从而获得了精度较高的运动人体剪影。

    由于人体姿态运动数据通常是高维矩阵数据,在处理之前一般需要进行降维度处理,首先通过传统的PCA降维算法进行处理。然后分析了PCA算法的缺陷和不足,并在PCA算法的基础上提出了一种基于概率信息的改进PCA算法。在PCA的基础上,加入一个噪声变量,用来调整后面N-M个高维度的数据的精度。 通过最大似然估计进行估计这个噪声模型,然后叠加到PCA模型的高维数据上。

   对降维后的数据进行粒子群的姿态估计,这里首先使用PSO粒子群优化算法进行优化,然后使用模拟退火算法进行优化,最后通过对比分析,提出了一种基于基因突变的变权值模拟退火粒子群优化算法,通过该算法,可以大大改进最后的收敛效果,使得最后的收敛值趋于稳定收敛,收敛值达到更小的误差水平,并且不存在粒子突变的情况。

最后,对CMU数据库中的不同运动姿态进行仿真,实验结果仿真可知本文方法不仅具有良好的计算效率,同时具有良好的收敛性和全局搜索能力,能准确估计和跟踪单目视频中的人体姿态。

    目前,运动捕获数据有多种格式,应用较为广泛的主要有BVH、ASF/AMC、FBK、C3D以及HTR等。其中ASF/AMC是最常用的数据格式。因此,这里,我们重点对ASF/AMC的数据格式进行介绍。

     ASF/AMC,全称Acclaim Skeleton File/Acclaim Motion Data,其主要由两个文件组成:一个骨架文件和一个运动文件。ASF是骨架文件,AMC是运动文件,对于每一个特定的动作,都是由骨架来完成的,这些数据,可以从CMU数据库中获得。

  下面对ASF骨架数据进行简单的介绍,其基本结构如下图所示:

f56af9731db7bf9d79d1c5fcaeab0205_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

“:version”指示出骨架定义的版本;

“:name”允许对骨架数据进行命名;

“:units”定义了各种类型数据的单位和一些参数的默认值;

“:documentation”存储的是一些起到说明作用的文档信息;

    “:root”部分定义了场景中一个特定的片段,它是骨架层次结构中的根节点,除了不包含方向和长度信息之外,和其他关节是一样的。其中”axis”定义了根对象的旋转顺序,”order”指出了应用于根节点的运动通道信息,并将以这样的顺序出现在AMC文件中。”Position”和”orientation”后面的信息给出了根节点的起始位置和方位,一般情况下都是0。

    “:bonedata”部分对于层次结构中的其他骨骼信息分别进行了描述,对每个骨骼的定义都是以”begin”,开始,以”end”结束的。在对各个骨骼的定义中,包含以下几个部分:”id”是一个唯一的数字,标识了当前骨骼的序号,这一项并不是必须的,因为每段骨骼都有自己的名称,而且这个名称在层次部分和AMC文件中都被用到。”name”定义了骨骼的名称,需要注意的是,每个骨骼必须有一个唯一的名称。”direction”指出了骨骼的方向,根据该信息,可以知道如何绘制该骨骼,并定义了从父骨骼到子骨骼的方向。方向信息和长度信息决定了一个骨骼相对于其父骨骼的偏移量。”length”定义了骨骼的长度信息。”axis”部分给出了骨骼的旋转轴。通过将旋转轴指定为一个独立的值,运动数据可以独立于绘制和层次信息,这对于那些需要解决万向节死锁问题的应用来说显得尤为重要。”dof”指定了运动通道的数量和这些通道在AMC文件中出现的顺序。如果某个骨骼不包含”dof”部分,那就认为该骨骼没有任何运动数据。”limits”部分给出了自由度中指定的通道的限制信息。对于每个通道而言,限制信息都是以一对数字的形式给出的,规定了该通道允许的最小值和最大值,在运动编辑等过程中,这部分数据用来限制旋转的范围。

“:hierarchy“部分描述了各段骨骼之间的层次关系。

3.MATLAB核心程序
```if Start(1) == 1
disp('read the avi...');
[Obj,frameNum_Original] = get_AVI(FileName_AVI);
%将视频保存为jpg形式,方便对比处理
[pixel_original,pixel_gray] = vedio_op(Obj,frameNum_Original);

[RR,CC,KK] = size(pixel_gray);

for i = 1:min(frameNum_Original,Process_frames)
pixel_gray2(:,:,i) = imresize(pixel_gray(:,:,i),[RR/2,CC/2]);
pixel_original2(:,:,:,i) = imresize(pixel_original(:,:,:,i),[RR/2,CC/2]);
end

%保存数据
save Save_Temp\Start1\Start01.mat pixel_gray2 frameNum_Original RR CC
save Save_Temp\Start1\Start02.mat pixel_original2 frameNum_Original RR CC

clear Obj pixel_original pixel_gray pixel_original2 pixel_gray2 frameNum_Original
disp('read the avi over...');
pause(8);
close all;
end

....................................................................
figure;
for tt = 1:min(frameNum_Original,Process_frames)
tt
subplot(221)
imshow(image_sequence2(:,:,:,tt));
title('原始图像');
subplot(222)
imshow(uint8(background_Update2));
title('背景图像更新');
subplot(223)
imshow(Images02(:,:,tt));
title('运动目标检测');
subplot(224)
imshow(Images22(:,:,tt));
title('运动目标提取');
pause(0.2);
end

clear image_sequence2 background_Update2 Images02 Images22 pixel_original2 frameNum_Original2 RR CC
disp('Get the Background over...');
pause(8);
close all;
end
```

相关文章
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
12天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
13天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
14天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
25天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章

下一篇
无影云桌面