基于FPGA的LMS自适应滤波器verilog实现,包括testbench

简介: 基于FPGA的LMS自适应滤波器verilog实现,包括testbench

1.算法仿真效果
vivado2019.2仿真结果如下:

c906e554f8b488e138a83d51a002f404_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f77705ddf003309bcee533dd00522e4d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
自适应算法是数字信号处理(DSP)的主体。它们被用于各种应用,包括声学回声消除、雷达制导系统、无线信道估计等。

    自适应算法用于估算随时间变化的信号。有许多自适应算法,如递归最小二乘(RLS)和卡尔曼滤波,但最常用的是最小均方算法(LMS)。这是一个简单但功能强大的算法,该算法可以利用莱迪思FPGA架构来实现。通过窗口和Hoff的开发,该算法采用的是梯度下降法来估计随时间变化的信号。梯度下降法找到一个最小值,如果它存在,在梯度负方向采取步骤。这样做是通过调整滤波器系数使误差最小化。

    LMS参考设计包括两个主要的功能模块 - 一个FIR滤波器和LMS算法。使用一个乘法器和一个具有反馈的加法器串行实现FIR滤波器。 FIR结果归一化,以尽量减少饱和。 LMS算法迭代更新系数,并把其馈送到FIR滤波器。FIR滤波器使用系数c(n)和输入的参考信号x(n)生成输出y(n)。然后所希望的信号d(n)与输出y(n)相减,产生一个误差,LMS算法用它来计算下一组的系数。

    自适应滤波器由参数可调的数字滤波器和自适应算法两部分组成。如图所示。

f50d8a7962318c8479ee05edf6459935_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    输入信号x(n) 通过参数可调数字滤波器后产生输出信号 y(n),将其与期望信号d(n)进行比较,形成误差信号e(n), 通过自适应算法对滤波器参数进行调整,最终使 e(n)的均方值最小。自适应滤波可以利用前一时刻已得的滤波器参数的结果,自动调节当前时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节自身传输特性以达到最优的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。维纳滤波器参数是固定的,适合于平稳随机信号。卡尔曼滤波器参数是时变的,适合于非平稳随机信号。然而,只有在信号和噪声的统计特性先验已知的情况下,这两种滤波技术才能获得最优滤波。在实际应用中,常常无法得到信号和噪声统计特性的先验知识。在这种情况下,自适应滤波技术能够获得极佳的滤波性能,因而具有很好的应用价值。 

    在自适应滤波器设计中,最小均方(Least Mean Square,LMS)算法使用随机梯度下降的方法实现代价函数的最小化,具有计算复杂度低、无需统计数据的先验知识和均值无偏地收敛到维纳解等优点,成为自适应算法中应用最广泛的一种。LMS自适应滤波器本质上是一种将自身传输特性调节到最优的维纳滤波器。

    对于输入信号 x ( n ) x(n)x(n),其通过参数可调的横向滤波器后,输出为 y ( n ) y(n)y(n) ,LMS算法根据滤波器的输出信号 y ( n ) y(n)y(n) 与期望信号 d ( n ) d(n)d(n) 的误差自动地调整滤波器的参数,从而使得滤波器适应随机信号的时变统计特性,LMS自适应滤波器的结构如图1所示。

3.verilog核心程序
```module LMSs(
...................................................................
subLMS subLMS_1(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(i_din),
.i_Step(i_Step),
.o_dout(LMS_tap_1_delay_out),
.o_Tap(LMS_tap_1_out)
);

subLMS subLMS_2(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_1_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_2_delay_out),
.o_Tap(LMS_tap_2_out)
);

subLMS subLMS_3(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_2_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_3_delay_out),
.o_Tap(LMS_tap_3_out)
);

subLMS subLMS_4(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_3_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_4_delay_out),
.o_Tap(LMS_tap_4_out)
);

subLMS subLMS_5(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_4_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_5_delay_out),
.o_Tap(LMS_tap_5_out)
);

subLMS subLMS_6(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_5_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_6_delay_out),
.o_Tap(LMS_tap_6_out)
);

subLMS subLMS_7(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_6_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_7_delay_out),
.o_Tap(LMS_tap_7_out)
);

endmodule
```

相关文章
|
12天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
33 1
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
47 4
|
1月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
1月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
51 16
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
43 3
|
15天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
28 0
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
### 简介 本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。
36 1
|
2月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
2月前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
51 3
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
76 0

热门文章

最新文章

下一篇
无影云桌面