基于FPGA的LMS自适应滤波器verilog实现,包括testbench

简介: 基于FPGA的LMS自适应滤波器verilog实现,包括testbench

1.算法仿真效果
vivado2019.2仿真结果如下:

c906e554f8b488e138a83d51a002f404_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f77705ddf003309bcee533dd00522e4d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
自适应算法是数字信号处理(DSP)的主体。它们被用于各种应用,包括声学回声消除、雷达制导系统、无线信道估计等。

    自适应算法用于估算随时间变化的信号。有许多自适应算法,如递归最小二乘(RLS)和卡尔曼滤波,但最常用的是最小均方算法(LMS)。这是一个简单但功能强大的算法,该算法可以利用莱迪思FPGA架构来实现。通过窗口和Hoff的开发,该算法采用的是梯度下降法来估计随时间变化的信号。梯度下降法找到一个最小值,如果它存在,在梯度负方向采取步骤。这样做是通过调整滤波器系数使误差最小化。

    LMS参考设计包括两个主要的功能模块 - 一个FIR滤波器和LMS算法。使用一个乘法器和一个具有反馈的加法器串行实现FIR滤波器。 FIR结果归一化,以尽量减少饱和。 LMS算法迭代更新系数,并把其馈送到FIR滤波器。FIR滤波器使用系数c(n)和输入的参考信号x(n)生成输出y(n)。然后所希望的信号d(n)与输出y(n)相减,产生一个误差,LMS算法用它来计算下一组的系数。

    自适应滤波器由参数可调的数字滤波器和自适应算法两部分组成。如图所示。

f50d8a7962318c8479ee05edf6459935_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    输入信号x(n) 通过参数可调数字滤波器后产生输出信号 y(n),将其与期望信号d(n)进行比较,形成误差信号e(n), 通过自适应算法对滤波器参数进行调整,最终使 e(n)的均方值最小。自适应滤波可以利用前一时刻已得的滤波器参数的结果,自动调节当前时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节自身传输特性以达到最优的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。维纳滤波器参数是固定的,适合于平稳随机信号。卡尔曼滤波器参数是时变的,适合于非平稳随机信号。然而,只有在信号和噪声的统计特性先验已知的情况下,这两种滤波技术才能获得最优滤波。在实际应用中,常常无法得到信号和噪声统计特性的先验知识。在这种情况下,自适应滤波技术能够获得极佳的滤波性能,因而具有很好的应用价值。 

    在自适应滤波器设计中,最小均方(Least Mean Square,LMS)算法使用随机梯度下降的方法实现代价函数的最小化,具有计算复杂度低、无需统计数据的先验知识和均值无偏地收敛到维纳解等优点,成为自适应算法中应用最广泛的一种。LMS自适应滤波器本质上是一种将自身传输特性调节到最优的维纳滤波器。

    对于输入信号 x ( n ) x(n)x(n),其通过参数可调的横向滤波器后,输出为 y ( n ) y(n)y(n) ,LMS算法根据滤波器的输出信号 y ( n ) y(n)y(n) 与期望信号 d ( n ) d(n)d(n) 的误差自动地调整滤波器的参数,从而使得滤波器适应随机信号的时变统计特性,LMS自适应滤波器的结构如图1所示。

3.verilog核心程序
```module LMSs(
...................................................................
subLMS subLMS_1(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(i_din),
.i_Step(i_Step),
.o_dout(LMS_tap_1_delay_out),
.o_Tap(LMS_tap_1_out)
);

subLMS subLMS_2(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_1_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_2_delay_out),
.o_Tap(LMS_tap_2_out)
);

subLMS subLMS_3(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_2_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_3_delay_out),
.o_Tap(LMS_tap_3_out)
);

subLMS subLMS_4(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_3_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_4_delay_out),
.o_Tap(LMS_tap_4_out)
);

subLMS subLMS_5(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_4_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_5_delay_out),
.o_Tap(LMS_tap_5_out)
);

subLMS subLMS_6(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_5_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_6_delay_out),
.o_Tap(LMS_tap_6_out)
);

subLMS subLMS_7(
.i_clk(i_clk),
.i_rst(i_rst),
.i_en(i_en),
.i_din(LMS_tap_6_delay_out),
.i_Step(i_Step),
.o_dout(LMS_tap_7_delay_out),
.o_Tap(LMS_tap_7_out)
);

endmodule
```

相关文章
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
123 74
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的信号发生器verilog实现,可以输出方波,脉冲波,m序列以及正弦波,可调整输出信号频率
本项目基于Vivado2019.2实现信号发生器,可输出方波、脉冲波、m随机序列和正弦波。完整程序无水印,含详细中文注释与操作视频。FPGA技术使信号发生器精度高、稳定性强、功能多样,适用于电子工程、通信等领域。方波、脉冲波、m序列及正弦波的生成原理分别介绍,代码核心部分展示。
|
1月前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
158 69
|
2月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
82 26
|
3月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
87 8
|
3月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
106 11
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
76 1
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
78 4
|
4月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
82 16

热门文章

最新文章