基于visual-hull算法的图像三维重建matlab仿真

简介: 基于visual-hull算法的图像三维重建matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

6272d114c0c75242a0b3a3d3b79537c7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1650c1b141f55b394556f3511c63973a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b284501758f6d0c70a0fd06a9cf07b3d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7d4b4fae3e396d3968231225e394ead6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
visual hull用于简单、快速地获取三维模型。目前,获取三维模型的方式有:
利用传统几何构造技术直接构造模型.利用三维扫描设备对真实物体进行扫描,进而重建出模型.利用从各个视角拍摄的真实物体的多幅图像重建模型.由图像重建三维模型技术又可分为两类:一类是通过多幅深度图像重建模型,另一类是通过多幅照片生成物体的可见外壳visual hull.
Laurentini 最早提出了可见外壳(visual hulls )的概念,即可见外壳就是由空间物体的所有已知侧影轮廓线决定的该物体的凸包,是一种由形状到轮廓的3D重建技术来构建几何对象。具体方法是,假定场景中的前景物体可以和背景相分离。基于这样的假设,原始图像可以经过阈值化前/背景二值图像,得到轮廓图像(silhouette image)。前景掩膜,所谓的轮廓,是相应3D前景物体的2D投影。伴随着相机外参,轮廓定义了反向投影的通用椎体,该锥体包含这个前景物体。
当利用透视投影的方式从多个视角观察某一空间物体时,在每一个视角上都会得到一条该物体的侧影轮廓线。这条侧影轮廓线和对应的透视投影中心将共同决定一个三维空间中一般形状的锥体,轮廓椎体(silhouette cone)。而由所有已知侧影轮廓线和对应的透视投影中心决定的锥体的intersection相交点,最终将决定一个包含该物体的凸包,即物体的可见外壳。在多数情况下,空间物体的可见外壳是该物体的合理逼近.

  Visual hull(可视外壳)是由Laurentini引入的有形状到轮廓的3D重建技术构建的几何实体。这种技术假定场景中的前景物体可以和背景相分离。基于这样的假设,原始图像可以经过阈值化处理成前/背景二值图像,我们将这种图像称作轮廓图像(silhouette image)。所谓的轮廓,是相应3D前景物体的2D投影。伴随着相机观看参数,轮廓定义了后向投影的涵盖实际物体的通用锥体。这个锥体被称作轮廓锥体(silhouette cone)。两个锥体相交的地方被称作可视外壳,它是实际3D物体的几何边界。

  所以说,可视外壳就是由空间物体的所有已知侧影轮廓线决定的该物体的凸包。当利用透视投影的方式从多个视角观察某一空间物体时,在每一个视角上都会得到一条该物体的侧影轮廓线。这条侧影轮廓线和对应的透视投影中心将共同决定一个三维空间中一般形状的锥体。显然,该物体必将落于这个锥体之内;而由所有已知侧影轮廓线和对应的透视投影中心决定的锥体的交最终将决定一个包含该物体的凸包,这个凸包就是物体的可视外壳。在多数情况下,空间物体的可视外壳是该物体的合理逼近。

  Martin和Aggarwal 最早提出了用多幅照片生成可视外壳的方法。他们利用真实物体在照片上的侧影轮廓线和相关的相机参数实现了物体的三维重建。Chien等人采用八叉树结构来表示物体的可视外壳。这种八叉树结构是通过预先在平行投影照片上生成表示物体的四叉树的基础上建立的。Potmesil和Szeliski同样建立了可视外壳的八叉树表示,但输入改为从任意视角拍摄的透视投影照片。Garcia 等人也提出了一种改进的八叉树表示方法。

3.MATLAB核心程序```object_points3D = [voxels(:,1)'; voxels(:,2)'; voxels(:,3)'; ones(1, length(voxels))];
voxels(:, 4) = zeros(size(voxels(:, 4)));
voxel_inds = {};
img_vals = {};
dmin = depth_range(1);
dmax = depth_range(2);
img_size = size(silhouettes);
for i = 1:size(M,3)
r = M(1:3, 1:3, i);
t = M(1:3, 4, i);
if t == [0;0;0]
continue;
end

center = [-(r')* t; 1]; 

cam_center = repmat(center, 1, size(object_points3D,2));

KM = [K]*M(1:3, 1:4, i);

points2D = KM*object_points3D;
points2D = points2D./[points2D(3,:); points2D(3,:); points2D(3,:)];

cur_silhouette = silhouettes(:,:,i);

pixThresh = mean(cur_silhouette(:)) + std(cur_silhouette(:));
cur_mask = cur_silhouette > pixThresh;
saliencyFlag = zeros(1,size(points2D,2),'logical');
for ii = 1:size(points2D,2)
    if points2D(2,ii) > 1 && points2D(2,ii) < img_size(1) && ...
       points2D(1,ii) > 1 && points2D(1,ii) < img_size(2)
        saliencyFlag(ii) = cur_mask(round(points2D(2,ii)),round(points2D(1,ii)));
    end
end

saliencyFlag = ones(1,size(points2D,2),'logical');

d = sqrt(sum((cam_center - object_points3D).^2, 1));
pts_ind = find(... %d > dmin & d < dmax ...
    points2D(2,:) > 1 & points2D(2,:) < img_size(1) ...
    & points2D(1,:) > 1 & points2D(1,:) < img_size(2) ...
    & saliencyFlag);

 pi = points2D(1,pts_ind);
 pj = points2D(2,pts_ind);


[img_val, ind, object_points_cam] = GetSilhouetVals([pi;pj],  cur_silhouette);

ind = pts_ind(ind);

voxel_inds{i} = ind;
img_vals{i} = img_val;

if(display_projected_voxels)
    figure(fid), 
    imagesc(cur_silhouette);title(i);hold on
    plot(object_points_cam(1,:), object_points_cam(2,:), '.g');hold off

end

end
```

相关文章
|
15天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
8天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
9天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
11天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
14天前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
34 0