基于visual-hull算法的图像三维重建matlab仿真

简介: 基于visual-hull算法的图像三维重建matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

6272d114c0c75242a0b3a3d3b79537c7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1650c1b141f55b394556f3511c63973a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b284501758f6d0c70a0fd06a9cf07b3d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7d4b4fae3e396d3968231225e394ead6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
visual hull用于简单、快速地获取三维模型。目前,获取三维模型的方式有:
利用传统几何构造技术直接构造模型.利用三维扫描设备对真实物体进行扫描,进而重建出模型.利用从各个视角拍摄的真实物体的多幅图像重建模型.由图像重建三维模型技术又可分为两类:一类是通过多幅深度图像重建模型,另一类是通过多幅照片生成物体的可见外壳visual hull.
Laurentini 最早提出了可见外壳(visual hulls )的概念,即可见外壳就是由空间物体的所有已知侧影轮廓线决定的该物体的凸包,是一种由形状到轮廓的3D重建技术来构建几何对象。具体方法是,假定场景中的前景物体可以和背景相分离。基于这样的假设,原始图像可以经过阈值化前/背景二值图像,得到轮廓图像(silhouette image)。前景掩膜,所谓的轮廓,是相应3D前景物体的2D投影。伴随着相机外参,轮廓定义了反向投影的通用椎体,该锥体包含这个前景物体。
当利用透视投影的方式从多个视角观察某一空间物体时,在每一个视角上都会得到一条该物体的侧影轮廓线。这条侧影轮廓线和对应的透视投影中心将共同决定一个三维空间中一般形状的锥体,轮廓椎体(silhouette cone)。而由所有已知侧影轮廓线和对应的透视投影中心决定的锥体的intersection相交点,最终将决定一个包含该物体的凸包,即物体的可见外壳。在多数情况下,空间物体的可见外壳是该物体的合理逼近.

  Visual hull(可视外壳)是由Laurentini引入的有形状到轮廓的3D重建技术构建的几何实体。这种技术假定场景中的前景物体可以和背景相分离。基于这样的假设,原始图像可以经过阈值化处理成前/背景二值图像,我们将这种图像称作轮廓图像(silhouette image)。所谓的轮廓,是相应3D前景物体的2D投影。伴随着相机观看参数,轮廓定义了后向投影的涵盖实际物体的通用锥体。这个锥体被称作轮廓锥体(silhouette cone)。两个锥体相交的地方被称作可视外壳,它是实际3D物体的几何边界。

  所以说,可视外壳就是由空间物体的所有已知侧影轮廓线决定的该物体的凸包。当利用透视投影的方式从多个视角观察某一空间物体时,在每一个视角上都会得到一条该物体的侧影轮廓线。这条侧影轮廓线和对应的透视投影中心将共同决定一个三维空间中一般形状的锥体。显然,该物体必将落于这个锥体之内;而由所有已知侧影轮廓线和对应的透视投影中心决定的锥体的交最终将决定一个包含该物体的凸包,这个凸包就是物体的可视外壳。在多数情况下,空间物体的可视外壳是该物体的合理逼近。

  Martin和Aggarwal 最早提出了用多幅照片生成可视外壳的方法。他们利用真实物体在照片上的侧影轮廓线和相关的相机参数实现了物体的三维重建。Chien等人采用八叉树结构来表示物体的可视外壳。这种八叉树结构是通过预先在平行投影照片上生成表示物体的四叉树的基础上建立的。Potmesil和Szeliski同样建立了可视外壳的八叉树表示,但输入改为从任意视角拍摄的透视投影照片。Garcia 等人也提出了一种改进的八叉树表示方法。

3.MATLAB核心程序```object_points3D = [voxels(:,1)'; voxels(:,2)'; voxels(:,3)'; ones(1, length(voxels))];
voxels(:, 4) = zeros(size(voxels(:, 4)));
voxel_inds = {};
img_vals = {};
dmin = depth_range(1);
dmax = depth_range(2);
img_size = size(silhouettes);
for i = 1:size(M,3)
r = M(1:3, 1:3, i);
t = M(1:3, 4, i);
if t == [0;0;0]
continue;
end

center = [-(r')* t; 1]; 

cam_center = repmat(center, 1, size(object_points3D,2));

KM = [K]*M(1:3, 1:4, i);

points2D = KM*object_points3D;
points2D = points2D./[points2D(3,:); points2D(3,:); points2D(3,:)];

cur_silhouette = silhouettes(:,:,i);

pixThresh = mean(cur_silhouette(:)) + std(cur_silhouette(:));
cur_mask = cur_silhouette > pixThresh;
saliencyFlag = zeros(1,size(points2D,2),'logical');
for ii = 1:size(points2D,2)
    if points2D(2,ii) > 1 && points2D(2,ii) < img_size(1) && ...
       points2D(1,ii) > 1 && points2D(1,ii) < img_size(2)
        saliencyFlag(ii) = cur_mask(round(points2D(2,ii)),round(points2D(1,ii)));
    end
end

saliencyFlag = ones(1,size(points2D,2),'logical');

d = sqrt(sum((cam_center - object_points3D).^2, 1));
pts_ind = find(... %d > dmin & d < dmax ...
    points2D(2,:) > 1 & points2D(2,:) < img_size(1) ...
    & points2D(1,:) > 1 & points2D(1,:) < img_size(2) ...
    & saliencyFlag);

 pi = points2D(1,pts_ind);
 pj = points2D(2,pts_ind);


[img_val, ind, object_points_cam] = GetSilhouetVals([pi;pj],  cur_silhouette);

ind = pts_ind(ind);

voxel_inds{i} = ind;
img_vals{i} = img_val;

if(display_projected_voxels)
    figure(fid), 
    imagesc(cur_silhouette);title(i);hold on
    plot(object_points_cam(1,:), object_points_cam(2,:), '.g');hold off

end

end
```

相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
4天前
|
算法
基于排队理论的客户结账等待时间MATLAB模拟仿真
本程序基于排队理论,使用MATLAB2022A模拟客户结账等待时间,分析平均队长、等待时长、不能结账概率、损失顾客数等关键指标。核心算法采用泊松分布和指数分布模型,研究顾客到达和服务过程对系统性能的影响,适用于银行、超市等多个领域。通过仿真,优化服务效率,减少顾客等待时间。
|
2天前
|
算法
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
16 6
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章