入门机器学习,全新方法!

简介: 入门机器学习,全新方法!

前言


入门机器学习,对大部分人来说很简单,一本书、一份课件、一套视频足矣,但是我大胆猜测很多人大概率都没有完整看完过。

所以前些天在朋友圈抱怨了一波:我感觉所谓牛人,大佬,刨除背景机遇,其成长路上可能也仅仅是比别人多咬了几次牙吧?我两年前与阿里云合作过Python训练营,参与学习1172人,完成第一次打卡384人,完成全部学习打卡并通过测试的学习者172,也就15%的样子。后来又合作了一次机器学习,最后没有出数据,感觉最终完成任务的应该不到10%。年前,我跟TensorFlow合作了TF的共学班,300人报名,最后按要求写了学习笔记的只有三个人。不知道每个没有坚持下去的人到底忙了什么比学习更重要的事,总之这批人大概率永远都走在第一章的路上。或许,咬牙本身就很难吧。


运营这个号,我一直也在观察探索新的学习方法。一个人,自学,没有坚强的毅力,没有及时的反馈,没有交流,没有“老师”,确实蛮难的。这不,ChatGPT来了之后就好玩多了。


正文


两个玩法:


一是找一套面试题,你来当考官


200 道经典机器学习面试题总结

机器学习、深度学习面试知识点汇总


让ChatGPT回答问题,在这个交互过程中,对这些知识点,你肯定会更加记忆深刻,也会有新的理解。比自己硬啃一份资料,效果好的不是一点半点,而且也更容易学完。


二是让ChatGPT当考官,你当面试者


这样可以随机稳固知识,还可以来一波实况演练,效果也是非常好。

77.png

相关文章
|
1月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
5天前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
13 2
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
25 2
|
29天前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
55 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
15天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
24 1
|
26天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
18 1
|
28天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
47 2
|
1月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
23 4
|
1月前
|
机器学习/深度学习
如何用贝叶斯方法来解决机器学习中的分类问题?
【10月更文挑战第5天】如何用贝叶斯方法来解决机器学习中的分类问题?
|
1月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
379 1