基于爬山优化算法的三维曲面极值搜索matlab仿真

简介: 基于爬山优化算法的三维曲面极值搜索matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

37af084c0c1ffd787dd8680fd666d8da_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
58169265b25cf0174304f7aae7fefcf0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
28070247499ebbeaf6232ceca0618ada_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   爬山法是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。

    爬山法是指经过评价当前的问题状态后,限于条件去增加这一状态与目标状态的差异,经过迂回前进,最终达到解决问题的总目标。就如同爬山一样,为了到达山顶,有时不得不先上矮山顶,然后再下来,这样翻越一个个的小山头,直到最终达到山顶。可以说,爬山法是一种"以退为进"的方法,往往具有"退一步进两步"的作用,后退乃是为了更有效地前进。爬山法也叫逐个修改法、瞎子摸象法。

  解多变量无约束最优化问题的一类方法。有的书上称直接法或直接搜索法,是通过点的直接移动产生的目标值有所改善的点,经过这样的移动,逐步到达使目标函数最优的点。如果我们把目标函数的几何图形看成一个山峰,那么点的直接移动就像人在爬山,选择方向,逐步向山顶移动。可分为轴向搜索法、单纯形调优法、Powell法等。轴向搜索法是以沿坐标轴方向移动为基础的搜索方法,在进行每一轮沿坐标轴方向搜索时,是从一参考点出发,依次沿平行于各个坐标轴方向连续作对应的目标函数值改进的搜索移动,并以最后获得的点作为下一轮迭代点。同时,为提高求解的效率.还要采取某些加快收敛的措施。

  问题求解的过程就是努力沟通问题的起始状态和目标状态之间的联系链条,由起始状态出发,逐步向目标推移、逼近的过程。在思维课题的求解活动中,人们几乎总是一直关注着所要达到的最终目标,试图不断地向目标逼近。这就像在登山活动中运动员时刻把顶峰放在心目之中,力图接近它、占领它一样。在解决思维课题时,我们经常自觉或不自觉地运用着能够尽量向目标靠拢的方法。这也就是通常所说的爬山法。

   爬山法与中途点法是彼此接近的方法。中途点法在实质上也就是通过一个个的中途点而向最终目标逼近的方法。同时,在问题求解活动中,这两种方法也是紧密相联.可以配合使用的。比如,有一个数学问题,要求决定两个量v,u之间的关系。我们可以把求出包含v,u的关系式(其中可以含有其他未知量)和求出只包含v,u和已知量的关系式作为两个中途点,把整个求解过程区分为三个小阶段。在每个小阶段中又可分别应用爬山法来进行试探。在第一阶段中,那些能够得出同时把v,u包括进去的关系式的步骤将被看做是较优的步骤;而能够得出既把v,u同时包含在内,又含有最少的其他未知量,并且显得比较简单.对其他未知量容易加以分离、代换和消除的关系式的步骤就是最优步骤。在第二阶段中,那些能够消除其他未知量个数最多的步骤将是最优步骤。把爬山法同中途点法结合起来运用,可以更好地发挥它们的作用。


3.MATLAB核心程序

    improvement = 0;
    
    iteration = iteration + 1;
    trajectory1x(iteration) = A.position(1);
    trajectory1y(iteration) = A.position(2);
    trajectory2(iteration) = A.cost;
    
    Neighbours = HC(A , stepSize, lb, ub);
    
    for k = 1 : length(Neighbours)
        B = Neighbours( k );
        if B.cost > A.cost 
            improvement  = 1;
            A.cost = B.cost;
            A.position = B.position;
        end
    end
   
end
 
 
 
figure
subplot(1,2,1)
x = lb(1):stepSize(1):ub(1);
y = lb(2):stepSize(2):ub(2);
[x_new , y_new] = meshgrid(x,y);
for i = 1: length(x)
    for j = 1 : length(y)
        X = [x_new(i,j) , y_new(i,j)];
        z_new(i,j) = objectiveFunction(X);
    end
end
surfc(x_new, y_new, z_new)
hold on
xlabel('p1')
ylabel('p2')
zlabel('cost')
shading interp
box on
 
 
for k = 1 : length(trajectory2);
    traj_final_x(k) = trajectory1x(k);
    traj_final_y(k) = trajectory1y(k);
    traj_final_z(k) = trajectory2(k);
end
plot3(traj_final_x,traj_final_y,traj_final_z, 'g-', 'lineWidth' , 1)
plot3(initial(1),initial(2),cost_initial,'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
plot3(traj_final_x(end),traj_final_y(end),traj_final_z(end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
subplot(1,2,2)
hold on
pcolor(x_new, y_new, z_new)
view(0,90)
plot(traj_final_x,traj_final_y, 'g-', 'lineWidth' , 1)
plot(initial(1),initial(2),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
plot(traj_final_x(end),traj_final_y(end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
shading interp
 
 
yy=trajectory2;
 
figure
plot(1:10:iteration,yy(1:10:iteration) ,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('Iteration')
ylabel('Cost')
 
x1=trajectory1x;
y1=trajectory1y;
 
figure
plot(1:10:iteration,x1(1:10:iteration) ,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1:10:iteration,y1(1:10:iteration),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('X轴轨迹','Y轴轨迹');
xlabel('Iteration')
ylabel('轨迹')
相关文章
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
25 12
|
2天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
1天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
139 80
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
6天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
28天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
14天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
21天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。

热门文章

最新文章