基于爬山优化算法的三维曲面极值搜索matlab仿真

简介: 基于爬山优化算法的三维曲面极值搜索matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

37af084c0c1ffd787dd8680fd666d8da_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
58169265b25cf0174304f7aae7fefcf0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
28070247499ebbeaf6232ceca0618ada_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   爬山法是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。

    爬山法是指经过评价当前的问题状态后,限于条件去增加这一状态与目标状态的差异,经过迂回前进,最终达到解决问题的总目标。就如同爬山一样,为了到达山顶,有时不得不先上矮山顶,然后再下来,这样翻越一个个的小山头,直到最终达到山顶。可以说,爬山法是一种"以退为进"的方法,往往具有"退一步进两步"的作用,后退乃是为了更有效地前进。爬山法也叫逐个修改法、瞎子摸象法。

  解多变量无约束最优化问题的一类方法。有的书上称直接法或直接搜索法,是通过点的直接移动产生的目标值有所改善的点,经过这样的移动,逐步到达使目标函数最优的点。如果我们把目标函数的几何图形看成一个山峰,那么点的直接移动就像人在爬山,选择方向,逐步向山顶移动。可分为轴向搜索法、单纯形调优法、Powell法等。轴向搜索法是以沿坐标轴方向移动为基础的搜索方法,在进行每一轮沿坐标轴方向搜索时,是从一参考点出发,依次沿平行于各个坐标轴方向连续作对应的目标函数值改进的搜索移动,并以最后获得的点作为下一轮迭代点。同时,为提高求解的效率.还要采取某些加快收敛的措施。

  问题求解的过程就是努力沟通问题的起始状态和目标状态之间的联系链条,由起始状态出发,逐步向目标推移、逼近的过程。在思维课题的求解活动中,人们几乎总是一直关注着所要达到的最终目标,试图不断地向目标逼近。这就像在登山活动中运动员时刻把顶峰放在心目之中,力图接近它、占领它一样。在解决思维课题时,我们经常自觉或不自觉地运用着能够尽量向目标靠拢的方法。这也就是通常所说的爬山法。

   爬山法与中途点法是彼此接近的方法。中途点法在实质上也就是通过一个个的中途点而向最终目标逼近的方法。同时,在问题求解活动中,这两种方法也是紧密相联.可以配合使用的。比如,有一个数学问题,要求决定两个量v,u之间的关系。我们可以把求出包含v,u的关系式(其中可以含有其他未知量)和求出只包含v,u和已知量的关系式作为两个中途点,把整个求解过程区分为三个小阶段。在每个小阶段中又可分别应用爬山法来进行试探。在第一阶段中,那些能够得出同时把v,u包括进去的关系式的步骤将被看做是较优的步骤;而能够得出既把v,u同时包含在内,又含有最少的其他未知量,并且显得比较简单.对其他未知量容易加以分离、代换和消除的关系式的步骤就是最优步骤。在第二阶段中,那些能够消除其他未知量个数最多的步骤将是最优步骤。把爬山法同中途点法结合起来运用,可以更好地发挥它们的作用。


3.MATLAB核心程序

    improvement = 0;
    
    iteration = iteration + 1;
    trajectory1x(iteration) = A.position(1);
    trajectory1y(iteration) = A.position(2);
    trajectory2(iteration) = A.cost;
    
    Neighbours = HC(A , stepSize, lb, ub);
    
    for k = 1 : length(Neighbours)
        B = Neighbours( k );
        if B.cost > A.cost 
            improvement  = 1;
            A.cost = B.cost;
            A.position = B.position;
        end
    end
   
end
 
 
 
figure
subplot(1,2,1)
x = lb(1):stepSize(1):ub(1);
y = lb(2):stepSize(2):ub(2);
[x_new , y_new] = meshgrid(x,y);
for i = 1: length(x)
    for j = 1 : length(y)
        X = [x_new(i,j) , y_new(i,j)];
        z_new(i,j) = objectiveFunction(X);
    end
end
surfc(x_new, y_new, z_new)
hold on
xlabel('p1')
ylabel('p2')
zlabel('cost')
shading interp
box on
 
 
for k = 1 : length(trajectory2);
    traj_final_x(k) = trajectory1x(k);
    traj_final_y(k) = trajectory1y(k);
    traj_final_z(k) = trajectory2(k);
end
plot3(traj_final_x,traj_final_y,traj_final_z, 'g-', 'lineWidth' , 1)
plot3(initial(1),initial(2),cost_initial,'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
plot3(traj_final_x(end),traj_final_y(end),traj_final_z(end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
subplot(1,2,2)
hold on
pcolor(x_new, y_new, z_new)
view(0,90)
plot(traj_final_x,traj_final_y, 'g-', 'lineWidth' , 1)
plot(initial(1),initial(2),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
plot(traj_final_x(end),traj_final_y(end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
shading interp
 
 
yy=trajectory2;
 
figure
plot(1:10:iteration,yy(1:10:iteration) ,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('Iteration')
ylabel('Cost')
 
x1=trajectory1x;
y1=trajectory1y;
 
figure
plot(1:10:iteration,x1(1:10:iteration) ,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1:10:iteration,y1(1:10:iteration),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('X轴轨迹','Y轴轨迹');
xlabel('Iteration')
ylabel('轨迹')
相关文章
|
4天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
6天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
211 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
134 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)