基于爬山优化算法的三维曲面极值搜索matlab仿真

简介: 基于爬山优化算法的三维曲面极值搜索matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

37af084c0c1ffd787dd8680fd666d8da_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
58169265b25cf0174304f7aae7fefcf0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
28070247499ebbeaf6232ceca0618ada_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   爬山法是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。

    爬山法是指经过评价当前的问题状态后,限于条件去增加这一状态与目标状态的差异,经过迂回前进,最终达到解决问题的总目标。就如同爬山一样,为了到达山顶,有时不得不先上矮山顶,然后再下来,这样翻越一个个的小山头,直到最终达到山顶。可以说,爬山法是一种"以退为进"的方法,往往具有"退一步进两步"的作用,后退乃是为了更有效地前进。爬山法也叫逐个修改法、瞎子摸象法。

  解多变量无约束最优化问题的一类方法。有的书上称直接法或直接搜索法,是通过点的直接移动产生的目标值有所改善的点,经过这样的移动,逐步到达使目标函数最优的点。如果我们把目标函数的几何图形看成一个山峰,那么点的直接移动就像人在爬山,选择方向,逐步向山顶移动。可分为轴向搜索法、单纯形调优法、Powell法等。轴向搜索法是以沿坐标轴方向移动为基础的搜索方法,在进行每一轮沿坐标轴方向搜索时,是从一参考点出发,依次沿平行于各个坐标轴方向连续作对应的目标函数值改进的搜索移动,并以最后获得的点作为下一轮迭代点。同时,为提高求解的效率.还要采取某些加快收敛的措施。

  问题求解的过程就是努力沟通问题的起始状态和目标状态之间的联系链条,由起始状态出发,逐步向目标推移、逼近的过程。在思维课题的求解活动中,人们几乎总是一直关注着所要达到的最终目标,试图不断地向目标逼近。这就像在登山活动中运动员时刻把顶峰放在心目之中,力图接近它、占领它一样。在解决思维课题时,我们经常自觉或不自觉地运用着能够尽量向目标靠拢的方法。这也就是通常所说的爬山法。

   爬山法与中途点法是彼此接近的方法。中途点法在实质上也就是通过一个个的中途点而向最终目标逼近的方法。同时,在问题求解活动中,这两种方法也是紧密相联.可以配合使用的。比如,有一个数学问题,要求决定两个量v,u之间的关系。我们可以把求出包含v,u的关系式(其中可以含有其他未知量)和求出只包含v,u和已知量的关系式作为两个中途点,把整个求解过程区分为三个小阶段。在每个小阶段中又可分别应用爬山法来进行试探。在第一阶段中,那些能够得出同时把v,u包括进去的关系式的步骤将被看做是较优的步骤;而能够得出既把v,u同时包含在内,又含有最少的其他未知量,并且显得比较简单.对其他未知量容易加以分离、代换和消除的关系式的步骤就是最优步骤。在第二阶段中,那些能够消除其他未知量个数最多的步骤将是最优步骤。把爬山法同中途点法结合起来运用,可以更好地发挥它们的作用。


3.MATLAB核心程序

    improvement = 0;
    
    iteration = iteration + 1;
    trajectory1x(iteration) = A.position(1);
    trajectory1y(iteration) = A.position(2);
    trajectory2(iteration) = A.cost;
    
    Neighbours = HC(A , stepSize, lb, ub);
    
    for k = 1 : length(Neighbours)
        B = Neighbours( k );
        if B.cost > A.cost 
            improvement  = 1;
            A.cost = B.cost;
            A.position = B.position;
        end
    end
   
end
 
 
 
figure
subplot(1,2,1)
x = lb(1):stepSize(1):ub(1);
y = lb(2):stepSize(2):ub(2);
[x_new , y_new] = meshgrid(x,y);
for i = 1: length(x)
    for j = 1 : length(y)
        X = [x_new(i,j) , y_new(i,j)];
        z_new(i,j) = objectiveFunction(X);
    end
end
surfc(x_new, y_new, z_new)
hold on
xlabel('p1')
ylabel('p2')
zlabel('cost')
shading interp
box on
 
 
for k = 1 : length(trajectory2);
    traj_final_x(k) = trajectory1x(k);
    traj_final_y(k) = trajectory1y(k);
    traj_final_z(k) = trajectory2(k);
end
plot3(traj_final_x,traj_final_y,traj_final_z, 'g-', 'lineWidth' , 1)
plot3(initial(1),initial(2),cost_initial,'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
plot3(traj_final_x(end),traj_final_y(end),traj_final_z(end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
subplot(1,2,2)
hold on
pcolor(x_new, y_new, z_new)
view(0,90)
plot(traj_final_x,traj_final_y, 'g-', 'lineWidth' , 1)
plot(initial(1),initial(2),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
plot(traj_final_x(end),traj_final_y(end),'-bs',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
shading interp
 
 
yy=trajectory2;
 
figure
plot(1:10:iteration,yy(1:10:iteration) ,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('Iteration')
ylabel('Cost')
 
x1=trajectory1x;
y1=trajectory1y;
 
figure
plot(1:10:iteration,x1(1:10:iteration) ,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1:10:iteration,y1(1:10:iteration),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('X轴轨迹','Y轴轨迹');
xlabel('Iteration')
ylabel('轨迹')
相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
本文旨在探讨深度学习中常用的优化算法,包括梯度下降、动量方法、AdaGrad、RMSProp和Adam等。通过分析每种算法的原理、优缺点及适用场景,揭示它们在训练深度神经网络过程中的关键作用。同时,结合具体实例展示这些优化算法在实际应用中的效果,为读者提供选择合适优化算法的参考依据。
|
7天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
22 2
|
9天前
|
机器学习/深度学习 算法 物联网
探究操作系统的心脏:调度算法的演变与优化
本文旨在深入探讨操作系统中核心组件——调度算法的发展脉络与优化策略。通过分析从单任务到多任务、实时系统的演进过程,揭示调度算法如何作为系统性能瓶颈的解决关键,以及在云计算和物联网新兴领域中的应用前景。不同于传统摘要,本文将注重于概念阐释与实例分析相结合,为读者提供直观且全面的理解视角。
|
11天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
28 4
|
13天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
123 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
2月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
95 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
2月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
71 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
下一篇
无影云桌面