NeurIPS 2022 | 首个标注详细解释的多模态科学问答数据集,深度学习模型推理有了思维链(2)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: NeurIPS 2022 | 首个标注详细解释的多模态科学问答数据集,深度学习模型推理有了思维链

数据集比较

ScienceQA 是第一个标注详细解释的多模态科学问答数据集。相比于已有的数据集,ScienceQA 的数据规模、题型多样性、主题多样性等多个维度体现了优势。

 

ScienceQA 数据集与其它科学问答数据集的比较。

2、模型和方法


Baselines


作者在 ScienceQA 数据集了评估不同的基准方法,包括 VQA 模型如 Top-Down Attention、MCAN、BAN、DFAF、ViLT、Patch-TRM 和 VisualBERT,大规模语言模型如 UnifiedQA 和 GPT-3,以及 random chance 和 human performance。对于语言模型 UnifiedQA 和 GPT-3,背景图片会被转换成文本形式的注释(caption)。


GPT-3 (CoT)


最近的研究工作表明,在给定合适的提示后,GPT-3 模型可以在不同的下游任务表现出卓越的性能。为此,作者提出 GPT-3 (CoT) 模型,在提示中加入思维链(CoT),使得模型在生成答案的同时,可以生成对应的背景知识和解释


具体的提示模板如下图所示。其中 Ii 表示训练例子,It 表示测试例子。训练例子包含问题(Question)、选项(Options)、背景(Context)和答案(Answer)元素,其中答案由正确答案、背景知识(Lecture)和解释(Explanation)组成。GPT-3 (CoT) 会根据输入的提示信息,补全测试例子的预测答案、背景知识和解释。


GPT-3 (CoT) 采用的提示模板。

3、实验与分析


实验结果


不同的基准和方法在 ScienceQA 测试集上的准确率结果如下表所示。当前最好的 VQA 模型之一的 VisualBERT 只能达到 61.87% 的准确率。在训练的过程引入 CoT 数据,UnifiedQA_BASE 模型可以实现 74.11% 的准确率。而 GPT-3 (CoT) 在 2 个训练例子的提示下,实现了 75.17% 的准确率,高于其它基准模型。人类在 ScienceQA 数据集上表现优异,可以达到 88.40% 的总体准确率,并且在不同类别的问题上表现稳定。

 

不同的方法在 ScienceQA 测试集上的结果。

生成解释的评估


作者用自动评估指标如 BLEU-1、BLEU-2、ROUGE-L 和 Sentence Similarity 评估了不同方法生成的解释。由于自动评估指标只能衡量预测结果和标注内容的相似性,因此作者进一步采用了人工评估的方法,来评估生成解释的相关性、正确性和完整性。可以看到,GPT-3 (CoT) 生成的解释中 65.2% 符合了 Gold 标准

 

不同评估方法对生成解释的结果。

不同的提示模板


作者比较了不同的提示模板对 GPT-3 (CoT) 准确率的影响。可以看到在 QAM-ALE 的模板下,GPT-3 (CoT) 可以获得最大的平均准确率和最小的方差。另外,GPT-3 (CoT) 在 2 个训练例子的提示下,表现最佳。


不同提示模板的结果比较。

模型上限


为了探索 GPT-3 (CoT) 模型的性能上限,作者把标注的背景知识和解释加入模型的输入(QCMLE*-A)。我们可以看到 GPT-3 (CoT) 可以实现高达 94.13% 的准确率。这也提示了模型提升的一个可能方向:模型可以进行分步推理,即先检索到准确的背景知识和生成准确的解释,然后把这些结果作为输入。这个过程和人类解决复杂问题的过程很相似。


GPT-3 (CoT) 模型的性能上限。

不同的 ALE 位置


作者进一步讨论了 GPT-3 (CoT) 在生成预测时,不同的 ALE 位置对结果的影响。在 ScienceQA 上的实验结果表明,如果 GPT-3 (CoT) 先生成背景知识 L 或解释 E,再生成答案 A,其预测准确率会大幅下降。其主要原因是背景知识 L 和解释 E 有较多的词语数量,如果先生成 LE,GPT-3 模型有可能用完最大词数,或者提前停止生成文本,从而不能得到最终的答案 A。

 

不同的 LE 位置。

成功案例


如下 4 个例子中,GPT-3 (CoT) 不但能生成正确的答案,也能给出相关、正确且完整的解释。这说明 GPT-3 (CoT) 在 ScienceQA 数据集上表现出较强的多步推理和解释能力。

 

GPT-3 (CoT) 生成正确答案和解释的例子。

失败案例 I


在下面的三个例子中,GPT-3 (CoT) 虽然生成了正确的答案,但是生成的解释不相关、不正确或者不完整。这说明 GPT-3 (CoT) 对于生成逻辑一致的长序列还面临较大的困难。


GPT-3 (CoT) 能生成正确答案、但是生成的解释不正确的例子。

失败案例 II


在下面的四个例子中,GPT-3 (CoT) 不能生成正确的答案,也不能生成正确的解释。其中的原因有:(1)当前的 image captioning 模型还不能准确地描述示意图、表格等图片的语义信息,如果用图片注释文本表示图片,GPT-3 (CoT) 还不能很好地回答包含图表背景的问题;(2)GPT-3 (CoT) 生成长序列时,容易出现前后不一致(inconsistent)或不连贯(incoherent)的问题;(3)GPT-3 (CoT) 还不能很好地回答需要特定领域知识的问题。



GPT-3 (CoT) 能生成错误答案和解释的例子。

4、结论与展望


作者提出了首个标注详细解释的多模态科学问答数据集 ScienceQA。ScienceQA 包含 21208 道来自中小学科学学科的多选题,涵盖三大科学领域和丰富的话题,大部分问题标注有详细的背景知识和解释。ScienceQA 可以评估模型在多模态理解、多步推理和可解释性方面的能力。作者在 ScienceQA 数据集上评估了不同的基准模型,并提出 GPT-3 (CoT) 模型在生成答案的同时,可以生成相应的背景知识和解释。大量的实验分析和案例分析对模型的改进提出了有利的启发。


主要参考文献


[1] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, Ashwin Kalyan, et al. Learn to explain: multimodal reasoning via thought chains for science question answering. In Advances in neural information processing systems (NeurIPS), 2022.

[2] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In Advances in neural information processing systems (NeurIPS), 2020.

[4] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Hannaneh Hajishirzi. UnifiedQA: Crossing format boundaries with a single qa system. In Findings of the Association for Computational Linguistics (EMNLP), 2020.

[5] Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal machine comprehension. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

相关文章
|
6月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
346 6
|
1月前
|
人工智能 测试技术 vr&ar
DataDoP :一个大规模多模态数据集,包含 29K 真实世界的自由运动相机轨迹、深度图和详细的动作描述,目的支持艺术化相机轨迹生成。
2025-04-10 ,由浙江大学、上海人工智能实验室、斯坦福大学、香港中文大学和南洋理工大学联合创建了 DataDoP 数据集。该数据集包含 29K 真实世界的自由运动相机轨迹、深度图和详细的动作描述,目的为艺术化相机轨迹生成提供高质量的训练数据,推动基于学习的电影摄影技术发展。 一、研究背景 在视频制作中,相机轨迹设计是传达导演意图和增强视觉叙事的关键工具。传统方法依赖于几何优化或手工设计的程序系统,而近年来的基于学习的方法则继承了结构偏差或缺乏文本对齐,限制了创意合成。 目前遇到困难和挑战: 1、传统方法的局限性:传统方法依赖于几何建模或成本函数工程,限制了创意合成。 2、现有数据集的
|
4月前
|
人工智能 JSON API
LongDocURL:中科院联合阿里推出多模态长文档理解基准数据集,用于评估模型对复杂文档分析与推理的能力
LongDocURL 是由中科院与淘天集团联合推出的多模态长文档理解基准数据集,涵盖 2,325 个问答对,支持复杂文档的理解、推理和定位任务。
297 77
LongDocURL:中科院联合阿里推出多模态长文档理解基准数据集,用于评估模型对复杂文档分析与推理的能力
|
2月前
|
数据采集 人工智能 文字识别
OmniAlign-V:20万高质量多模态数据集开源,让AI模型真正对齐人类偏好
OmniAlign-V 是由上海交通大学、上海AI Lab等机构联合推出的高质量多模态数据集,旨在提升多模态大语言模型与人类偏好的对齐能力。该数据集包含约20万个多模态训练样本,涵盖自然图像和信息图表,结合开放式问答对,支持知识问答、推理任务和创造性任务。
103 10
OmniAlign-V:20万高质量多模态数据集开源,让AI模型真正对齐人类偏好
|
6月前
|
数据采集 文字识别 测试技术
智源研究院发布千万级多模态指令数据集Infinity-MM:驱动开源模型迈向SOTA性能
近年来,视觉语言模型(VLM)取得了显著进展,然而,现有的开源数据和指令数据集在数量和质量上依然落后,基于开源数据训练的模型在效果上仍然远落后于 SOTA 闭源模型或使用专有数据训练的开源模型。为解决以上问题,进一步提升开源模型的性能,2024年10月25日,智源研究院发布并开源了千万级多模态指令数据集Infinity-MM。
|
3月前
|
存储 人工智能 文字识别
MME-CoT:多模态模型推理能力终极评测!六大领域细粒度评估,港中大等机构联合推出
MME-CoT 是由港中文等机构推出的用于评估大型多模态模型链式思维推理能力的基准测试框架,涵盖数学、科学、OCR、逻辑、时空和一般场景等六个领域,提供细粒度的推理质量、鲁棒性和效率评估。
130 0
|
7月前
|
存储 数据采集 数据安全/隐私保护
商汤、清华、复旦等开源百亿级多模态数据集,可训练类GPT-4o模型
商汤科技、清华大学和复旦大学等机构联合开源了名为OmniCorpus的多模态数据集,规模达百亿级,旨在支持类似GPT-4级别的大型多模态模型训练。该数据集包含86亿张图像和1696亿个文本标记,远超现有数据集规模并保持高质量,具备广泛来源和灵活性,可轻松转换为纯文本或图像-文本对。经验证,该数据集质量优良,有望促进多模态模型研究,但同时也面临存储管理、数据偏见及隐私保护等挑战。
351 61
|
7月前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
1304 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
6月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
356 1
|
9月前
|
机器学习/深度学习 自然语言处理 自动驾驶
深度学习的奥秘:探索神经网络背后的科学
【8月更文挑战第26天】 在本文中,我们将一起揭开深度学习神秘的面纱,深入理解神经网络如何模仿人脑处理信息。通过浅显易懂的语言和生动的比喻,本文将带你从基础概念出发,逐步深入了解深度学习的核心机制和应用实例,让你对这一前沿技术有一个全面而深刻的认识。
196 62

热门文章

最新文章

相关产品

  • 人工智能平台 PAI